ﬁ

LA-5038
C.Z

Nonlinear Radiation Transport Simulation
with an Implicit Monte Carlo Method

=.| DO NOTCIRCULATE
i=¢( .  PERMANENT RETENTION
— ) ¢ . REQUIRED BY CONTRACT

B g i eme — ‘

los alamos

scientific laboratory

of the University of California
LOS ALAMOS, NEW MEXICO 87544

- e~ ™

-~

UNITED STATES
ATOMIC ENERGY COMMISSION
CONTRACT W-7408-ENG. 36




This report was prepared as an account of work sponsored by the United
States Government. Neither the United States nor the United States Atomic
Energy Commission, nor any of their employees, nor any of their contrac-
tors, subcontractors, or their employees, makes any warranty, express or im-
plied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness or usefulness of any information, apparatus, product or process dis-
closed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America. Awvailable from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151
Price: Printed Copy $3.00; Microfiche $0.95




) LA-5038
< uc-32

ISSUED: January 1973

+
°

loss/\‘alamos
scientific laboratory

of the University of California
LOS ALAMOS, NEW MEXICO 87544

-

Nonlinear Radiation Transport Simulation

with an Implicit Monte Carlo Method

vu‘

=4 by
.=Lo.

= L. L. Carter
EE'\- o C. A. Forest
_)_o’

EE=m

==

== .

==m:

—_—— ,


ABOUT THIS REPORT
This official electronic version was created by scanning the best available paper or microfiche copy of the 
original report at a 300 dpi resolution.  Original 
color illustrations appear as black and white images.

For additional information or comments, contact: 
Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov



s

NONLINEAR RADIATION TRANSPORT SIMULATION
WITH AN IMPLICIT MONTE CARLO METHOD

by

L. L. Carter and C. A. Forest

ABSTRACT

A method is developed to solve the radiative transport equation
with Monte Carlo. The photon source aT® 1is expressed as the sum of an
extraneous source term plus a pseudoscattering term by utilizing the

radiative energy balance equation.

This resulting photon source is

sampled directly in the Monte Carlo calculation with an extrapolation
of cross sections and equation-of-state data from the previous time

step.

I. INTRODUCTION

An implicit Monte Carlo method has been report-
ed recently by Fleck and Cummings1 and by Fleck2 for
the simulation of nonlinear radiation transport.

They used an effective scattering technique to gain
improved accuracy and to incorporate stability in

the calculation, The results of preliminary calcu-
lations by Fleck and Cummings indicated that their
proposed method has better stability characteristics
than a previously reported fully explicit calcula-
tion.3 Later calculations indicate improved accuracy
provided opacities and equation-of-state data are
extrapolated in a proper manner.

The purpose of this report is to propose an
implicit Monte Carlo method that appears to have
certain advantages over the method of Fleck and
Cummings. Specifically, a more exact treatment of
the coupling between the material energy density
equation and the transport equation is provided,
which should enable the use of longer mesh intervals
in time, an important statistical consideration.

This method also removes the time centering parameter
o that was present in Fleck and Cummings' method.

The mathematical formulation of the radiative
transport is discussed in Sec., II. An implicit Monte
Carlo method for solving the radiative transport

problem in the absence of scattering is given in

Sec. III. In Sec. IV, some numerical results of
applying the implicit method of Sec. III on some ex—
ample problems are given. The implicit Monte Carlo
method is generalized further in Sec. V to include
scattering. The treatment of inverse Compton scat-
tering with Monte Carlo is discussed in Sec. VI.

II. MATHEMATICAL DESCRIPTION OF RADIATIVE TRANSPORT

General Discussion

The mathematical description of radiative trans~
port is discussed in considerable detail by Pomran-
ing.a The paper by Pomraning provides a good refer-
ence for the approximations involved in various math-
ematical descriptions of radiative tramsport, there-
fore we will omit such a discussion here. For our
purposes we will utilize the transport equation in

the form

10 49« g1 + 1, M TE® = 1, (W) BOW)

+ I J% B (Vo0,2:07) I(x,v7,0%,t)dv” 4", ()

where R is a shorthand notation denoting a space
position r, a direction of flight §, and a frequency
v at time t. I(R) 1s the specific intensity, and
B(v) is the Planck function,
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where u‘ is the absorption coefficient corrected for

induced effects as

B, ) = /(L + B /2mv) )
and ut is the total attenuation coefficient

H (V) = V) + f I Hg (W07, QeQ7) AV AR . (4)

We have assumed local thermodynamic equilibrium
to obtain the transport equation in the form of
Eq. (1). In addition, induced processes have been
neglected in the scattering terms. The variables
Has Hes Hys and B also depend upon spatial position
and time, but this has been suppressed in the inter-
est of compacting notation.

The transport equation is coupled through the
emission source term to a radiation and material
energy balance, The equation to express energy con-

servation is

u_(zr,t) s (8)

Mg (V) BOV) = g u, (W) by u (.

where bv i3 the normalized Planck spectrum

15n%3 1 )
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This enables us to define the cp in Eq. (5) in terms
of bv as

op(g.t) - I b, U (V) dv . (10)

The remaining variables, not yet defined in Eq. (5),
are an arbitrary source function S and the variable
B that relates the material energy density u to the
radiation energy density u, as

du_(z,t) 1
n GO CBGO an

The material energy density is related to the
materiagl temperature through equation-of-state

2t s [[[ [uw swma - [[[] ]

L (v, 208%) I(z,v7,R%,t)dvdQdv-dn’

- e cp(_r_.t) u (z,t) + S(_x;,t:)] . (5)
where ur(g.t) is the equilibrium radiation energy tables. This relationship will be expressed as
density* defined in terms of the Planck function as

u (z,t) = y(z,t) T(x,t) s (12)
u (gt = 3T f B(v)dv = aT 6)
where y(r,t) will in general depend upon pressure,
vith temperature, etc.
At this point, we assume that the transport
32k41r5 equation [Eq. (1)], the energy conservation equation
a= ;;:3;3 . €)) [Eq. (5)], the relation between the material energy

The emission term in the tramsport equation will sub-
sequently be expressed in terms of the radiation
energy density as

*Note that up(z,t) is not the energy density of the
radiation field.

density and radiation energy density [Eq. (11)], the
relation between the material energy demsity and the
temperature [Eq. (12)], and the miscellaneous defini-
tions that have been given provide an adequate mathe-
matical description of the problem. The proposed
method for solving these equations in the absence of
scattering is discussed in Sec., III.




III. IMPLICIT MONTE CARLO METHOD IN THE ABSENCE OF
SCATTERING

A. Complete Emission Term

The emission source term of the transport
equation is evaluated by solving the energy conser-
vation equation [Eq. (5)] for ur(g,t). In the ab-
sence of scattering, the u, r,t) that satisfied
Eq. (5) 1is given by

t Pl
o -]to cBopdt
ur(g,t) = “r(bt )e

t
¢ —jt‘ cﬁcpdt
+ J o de“B(x,t”) e

’S(Lgt’)
t

+ J' J ua(v) I(xr,v,8,t")dvdQ

t > to . (13)

where ur(g,to) is a specified initial condition at
(]
t .
The solution for ur(g,t), as given by
Eq. (13), may be utilized in the source term of the
transport equation, as given by Eq. (8), to express

the transport equation in the absence of scattering

as
1 3I(R
SEA 2T IR +u, (V) IR)
t -
c o -Jt° cBoptt
=G g by u (5t e
t
N -I _cBa dt””
+J dt“B(x,t”) e t {s(_r_.t‘)
tO
+ I J (V) I(g,v,g,t')dvdgl . (14)

The emission source term is now specified in terms
of the intensity I, an extraneous heat source S,

and an initial condition ur(g,to). It will subse-

quently be shown that the integration of the indivi- ‘

dual source term, which contains the intensity, may

be done with Monte Carlo. The time and space

dependence of ur(z,to) and any extraneous heat
source are assumed to be known. There is some ap-
proximation here, in practice, because u. r,to) is
usually replaced by its cell average value computed
from the previous time step. However, there is an
additional complication that affects all three source
terms. The quantities L bv’ and B are also func-
tions of time since they depend upon the temperature.
In general, the time dependence of these quantities
is not known and must be extrapolated in some manner
from information before t = t°,

The method developed by Fleck and Cummings
essentially consists of allowing for an extrapolation
of Gp and B (if necessary), replacing the exponentials
in Eq. (14) by their first-order expansions, and
using a time-centering parameter (o) in a finite
difference approximation. In this report, the time-
dependent behavior of op and B will be extrapolated,
but the photon source in the Monte Carlo calculation
will be sampled directly rather than incorporating
the additional approximations of first-order expan-
sions of exponentials and of time centering. Pre-
vious calculations have shown that Op and B general-
ly, though not always, display a nearly exponential
behavior with time and that the product opB is almost
constant. Therefore, the time-dependent behavior of
Op and B8 during the time interval will be extrapo-

lated as

o -cl(t—t°)/(t°—t‘1)
Up(ztt) = cp(f_ot ) e

P<e<el (15)
and
o cl(c-c°)/(c°-c'1)
B(r,t) = B(x,t') e ’
®<e<elt (16)
so that

o, (&,t) B(r,t) = cp(g,t°) B(,t%)

1

t°<t<t , a7



where tl denotes the time at the end of the current
time interval and t—l denotes the beginning of the

previous time interval. The constant C1 may be
determined from the information at the end of the

previous time interval as

y o fo @™ B
C1 =2 fn 5 I
0, @) Bt ™)

’ (18)

where op and B would generally be cell average quan-
tities in an actual calculation.

In the following subsections, the sampling of
the individual terms of the emission source is con-
gidered. In all cases, we extrapolate cp and B with
Eqs. (15) and (16). For the purpose of sampling
collision points, the value of the attenuation co~-
efficient at the beginning of the time interval is
utilized and gimilarly ua(v)bv/op is assumed to be
independent of time when sampling for v.

B. Sampling the ur(g,to) Source Term

The total photon energy per unit volume pro-
duced in & time At by the first term on the right-
hand side of Eq. (14) is obtained by multiplying
this term by dR dv At and integrating over { and v.
The result of this operation gives the energy

(] [] -CZ(t-to)
c cp(g,t ) ur(g,c e At R

t°<e<et a9)

where C2 is defined as

C
o o 1
C2 = c B(zr,t") cp(g_,t: ) +———-—-° =T .

t -t

(20)

Therefore, the total energy per unit volume produced

by this source term during the time interval is
given by Dl as

D, =

1

u_(z,t%) co_(z,t®) -cz(cl-:°)
X < P l-e .(21)

2

The time of a photon birth may be sampled in
the Monte Carlo simulation with the density function
obtained by dividing Eq. (19) by DlA:. Therefore,
the time is sampled as

1l .o
-C,(t7-t")
:.c°-(1:—zn[1-5!1-e 2 ” , (22
2

vhere £ is a random number on the unit interval.
The total energy produced in a cell during the
time interval, assuming cell average quantities to
describe ur(g.to). op(g,to), and B(g,to), is simply
the product of D1 and the cell volume. This energy
is distributed in the Monte Carlo simulation to a
number of source particles. The initial time of
each of these source particles is selected with Eq,
(22), each initial spatial position is gelected ran-
domly within the cell, each direction of flight ig
selected from an isotropic distribution, and each
frequency is selected with the density function

u (V) bvlcp s (23)

which 1s normally evaluated at t° although in prin-
ciple it could also be extrapolated.

C. Sampling the Implicit Source Term
The total energy per unit volume produced in a

time At by the last source term on the right-hand
side of Eq. (l4) is obtained by multiplying this

term by dQdvAt and then integrating over  and v.
The result of this operation gives the energy

co, (@:t%) B(z,t)
t -cz(t-c‘)
x I e [ J W (V)I(E,v7, 0%, t)av” ag”
t:O
x dt“At . (24)

The integral over v, 2, t” will be done with Monte

’ xCarlo so that

ua(v‘)I(g,v’,g‘.c‘)d:"rdv‘dg‘dc‘ = 2“1 , (25)
1

.




where wi is a photon weight and the summation is
over all collisions that occur in the phase space
3rdv’dg'dt’.

thought of as performing the integration over the

volume d Hence, each collision may be

prime variables in Eq. (24). The Monte Carlo is
also integrating this source term over the cell
volume because uaI is the photon energy dumped at
collisions per unit volume.

We now focus our attention on the ith collision.
The amount of photon energy produced in At, due to
this collision, may be obtained from Eqs. (24) and
(25) as

—cz(t-t‘)

cop(r_,:°) B(z,t%)e WAt , £33t , (26)

i

where wi is the photon weight upon entering the
collision and t” is the time of the collision.
Therefore, the total energy of the subsequent pho-
tons produced in the time interval, as a direct re-
sult of this collision, is given by the integral of
Eq. (26) over t from t” to tl.
defined as D2, is

This total energy,

co_(z,t°%) B(z,t")
p, = —2 W

2 02

-Cz(tl—t')’
. (27)

-

The D2 energy may be given to an individual
photon that begins its life history at the collision
point. However, there is a time delay between the
time the original photon suffers a collision and
This time de-

lay is randomly determined with the density function

the time the new photon is emitted.

obtained by dividing Eq. (26) by D2At. The new
time is sampled as
L -cz(tl-t‘)
t=t" -3~ fn|l-E&{l-~-e . (28)
C2

The emerging photon direction of flight is selected
from an isotropic distribution and the frequency is
selected with the density function

H, (V) b\)/cJp . (29)

Allowing the photon to always scatter and ad-
justing its weight at each collision will produce an
undesirable fluctuation of weights. The following
pseudoscattering procedure may be used to eliminate
this fluctuation of weights.

a. For D2/Wi < 1, a pseudoscattering collision

is allowed to occur with probability

c o_(z,t°) B(r,t°)
1 -f= P C l-e
2

1 .
—Cz(t -t7)

(30)

and the history of the incident photon is continued
With probability f,
the history of the incident photon is terminated.

b. For D2/wi > 1, splitting is utilized to
This
splitting is accomplished by setting n to the largest

without altering its weight.

avoid weight multipliers greater than unity.

integer that is less than or equal to D2/Wi and this

value of n is increased by one with probability

)

- - n.

¥y

into n different photons, each of which emerge with

The incident photon weight is them split

the weight of the incident photon.

In either of the above cases, the new time
after the pseudoscattering collision is selected
from Eq. (28), the frequency is selected with the
density function of Eq. (29) and the direction of
flight is selected isotropically.

The retardation in time at these pseudoscatter-
ing collisions arises naturally from the basic phy-
sical equations. This results because the material
energy gained by photon absorption increases the
probability of subsequent photon emission after the

absorption event.

D. Sampling the S Source Term

The part of the emission source term in Eq. (14)
that is due to the extraneous heat source S depends
upbn the time-dependent behavior of S. For compli-
cated situations, this term must be tabulated numer-
ically. Here we consider the simple case of

S(r,t) = So = constant (31)

within a cell, which may be simulated without numer-
ical tables.
The total energy per unit volume produced by

this source term in a time At is given by



c op(g_,t:o) B(x,t%)

)

-Cz(t-to)
S° l-e At ,

°<e<el . (32)

Hence, the total photon energy per unit volume pro-

duced by this term during the time interval is given
by

c op@_.:°) B(z,t?) s

1l .o
-C, (t1-t%)
xtl—to--:‘:—-il—ez ] . (33)

A rejection scheme for sampling the initial
photon time from the density function is given in
Fig. 1.
monotonically from 1/2 for |C (t -t%] ~0¢o
1forlc(t - t%] =,
fined as the probability of success per trial.

The efficiency of this acheme increases

Here, efficiency is de-

The selection of the initial space coordinates,
" the direction of flight, and the frequency of the
photon are identical to the corresponding selection
for the u, term.

E. _Energy Balance at the Fnd of a Time Step

The relation between the material energy den-
sity and the radiation energy density as given by
(11) may be utilized to write Eq. (5) in the

form

du_(z,t) J.
—S " ua(v) I(R)dv dR

-c op(g.t:) u (z,t) + S(z,t) ’ (34)

e[

Fig. 1. Selection of t for the S source term.

1
It-:°+y/c2|

where real scattering is still being neglected.
This equation is multiplied by d3rdt/AV and inte-
grated over a cell volume and a time interval to
obtain

um(tl) - um(to) = {|1isions within the cell during

[Total photon energy lost at col?
the time interval.

_ |Total photon energy created within
the cell during the time interval

cell during the time interval. ] /47, (35)

+ [Exttaneous heat introduced into the
where the bars denote an average over the cell and
AV is the volume of the cell, The first and second
terms on the right-hand side of Eq. (35) are obtained
from the Monte Carlo calculation during the time
interval. Since w (t7) and the extraneous source
term are agsumed to be known quantities, u, (t ) may
be determined from Eq. (35).

In the case of a perfect gas, the average tem-
perature within the cell at the end of the time step

is computed as

el =u hHry (36)

where y is a constant. In the more general situa-
tion, Y is not a constant so that Eq. (36) would be
determined by iteration with y obtained from equa-
the radiation

tion-of-state tables. In either case,

cell-averaged energy density is

4
u (th) = alT(eh)] . (37)

F. Susmary of the Monte Carlo Calculation in the
Absence of Scattering

A typical Monte Carlo calculation that uges the

sampling scheme described in this section is summa-
rized to clarify the sampling procedure and to pro-
vide a convenient reference for comparisons with
other schemes such as that previously proposed by
Fleck and Cummings. The calculation will be de-
scribed for a time step beginning at t° and contin-
uing to tl. We assume that initial information at
This
would include a temperature, a material energy

t° is available from the previous time step.

density, a radiation energy density, cross sections,

X
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and other necessary data for each cell. There
would also be a source of photons that consists of
those photons that reached the time boundary t°
during the last time-step calculation.

The derivation in this section has been pre-
sented for one given cell so that all quantities
should have a cell subscript. This cell identifier
will be denoted here by a j. The following compu-
tational steps are for the time interval from t° to
tl.

1. Make necessary adjustments in the photon
source* that consists of those photons that reached
the time boundary t° during the last time step.
This may, for example, include a combing method to
equalize photon weights and to increase or decrease
the number of such photons by properly adjusting
photon weights.

2. Create an additional source of photons that
initially carry a total photon energy DleVj in
D1j i1s determined from Eq. (21).

along with volume average values of urj’ Opj’ and

each cell, Here,

C2j' The initial coordinates of each photon are
sampled as discussed in part B of this section;
i.e., t from Eq. (22), the direction of flight iso-
tropically, v from ua(v)bvj/cpj’ and the space co-
ordinate randomly within the cell.

3. Create an additional source of photons due
to the S source term if nonzero, as discussed in
part D, and also create photons from any extraneous
photon sources that may be present.

4, For each photon of steps 1, 2, and 3,
sample its subsequent history and the history of
its progeny (due to pseudoscattering events) until
absorption, leakage, or time termination at tl
occurs, At each collision, sample for a pseudo-

scattering event as discussed in part C, i.e.,

follow steps (a) and (b) on p. 5 to decide if pseudo-

scattering occurs. If not, terminate the history.
Otherwise, sample the new time from Eq. (28), sample
the new frequency from the density function
ua(v) bv/opj’ sample the direction of flight isotro-
pically, and proceed with the weight that the photon
had before the collision (in the case of step (b) on
p. 5, more than one photon may emerge from the col-
lision point).

5. Tabulate the total photon energy lost at

collision events and the total photon energy created

*The word photon will be used here to denmote a

bundle of photon energy.

at pseudoscattering events for subsequent use in an
energy balance at the end of the Monte Carlo. Rather
than doing this at collisions, there are statistical
advantages obtained for optically thin cells by using
a path length estimator. Thus for each flight path

Energy lost to

collision events = ua(v) swW ’ (38)

Energy created due s
to pseudoscattering = u_ (V) J Dzds'
events a o

xll- = , (39)

1 .
—Czj(c -t7)
C,.8 e
23

1 -, 8
—c2j (t7-t™+= )]

where 8 is the length of the flight path that orig-
inates at t = t” - s/c and terminates at t = t~,
Here, W is the photon weight and the flight path is
defined to be terminated (for scoring purposes)
whenever the photon suffers a collision, reaches a
cell boundary, or reaches time cut-off. Note that
this path length scoring does not affect the sam-
pling at pseudoscattering collisions. However, it
is important to observe that for a flight path ter-
minating with a collision, the exponential

'Czj (tl-r.‘)
e also appears in Eqs. (27) and (28).
Hence, this exponential should only be evaluated on
the machine once for each collision.

6. After all photons are processed in step 4,
compute the new material enmergy density in each cell
from Eq. (35). The cell temperatures are computed
with Eq. (36), by iteration if necessary. Then the
average radiation energy density for each cell is
obtained from Eq. (37). The other necessary data,
such as cross sections, that will be needed for the
next time step are computed by utilizing the average
cell temperatures at tl.

7. Return to step (1) for the next step.



This method may be compared to the method sug-
The methods are sim-
ilar in the limit of a small time step although the

gested by Fleck and Cummings.

method proposed here does have a time delay at
pseudoscattering events even for small time steps.
The method here suffers frmv-the disadvantage that
one exponential and one logarithm must be evaluated
at each pseudogcattering event. However, the advan-
tage gained by treating the time-dependent behavior
in a more exact manner should allow longer time
steps and hence more than counteract this disadvan-

tage, -

G. Elimination of Pseudogcattering Domination
The implicit approach is used to improve

accuracy and to incorporate stability in the calcu-
lations. Bowever, it has certain difficulties that
are not encountered in a purely explicit calculation.
For example, if the quantity f is nearly zero for
the majority of the collisions within a cell and if
the cell is many mean free paths thick, a photon

may suffer a large number of pseudocollisions before
This is a physical-

ly possible situation in many problems since cells

being terminated by absorption.

tend to be very thick at low temperatures (thousands
or even millions of mean free paths) and since f
tends to be near zero for cells where the tempera-
ture is changing slowly. It is instructive that
this type of problem also occurs in the scheme of
Fleck and Curmings and seems to be an inherent prop-
erty of the implicit method of solution. In their
scheme, the quantity £ may be increased by properly
getting the time-centering parameter a.

For cells and time intervals where multiscat-
terings are a problem (these could be ldentified,
for example, as cells where the product of op with
a typical cell dimension is greater than 20 and that
also satisfy the criterion that £ < 0,05 at the be-
ginning of the time interval), the following par-
tially explicit approach could be used. The source

term in the transport equation is written as

(1-p) %? ua(v) bv ur(g,to) + p X (source term

in Eq. (14)), (40)
where p is an input probability for each cell so

that 0 € p € 1, Then all energy sources in the

previous derivation of this section, including the
Also,
there i8 an additional explicit source with a photon

pseudoscattering source, are multiplied by p.

energy per unit volume of
D, = (L-p) co (@) w @t - ) . D

The initial photon time for this source is selected
as

=+ et -, (42)
the direction of flight is selected isotropically,
and v 18 selected with the density function
ua(v) bv/°p° Here again op and u, would generally
represent cell-averaged quantities.

This method has the advantage that a certain
amount of mathematical rigor is preserved whereas
for cells where multiscattering events are a problem,
the probability p may be set so as to reduce the
number of scattering events to an acceptable level.
For example, for such cells p could be set so that
the pseudoscattering probability is 0.95 at the
beginning of the time step. This criterion for p
may be inserted into Eq. (30) to yield

0.95 02

p= . (63)

1 o
-C,(t7-t")
ccp(g,to) B(g,to)[l -e 2 ]

It seems advisable to use a (p¥l) only when
absolutely necessary because the implicit approach
has stability advantages over the explicit approach.
It should also be noted that op u, in Bq. (41) could
be extrapolated in some manner. We did not extrapo-
late here because we anticipated that this semiex—
plicit approach would be needed in low-temperature
This
makes the validity of an extrapolation highly ques-
tionable.

regions where statistics are already poor.

H. Comments on Cell Averaging

Both the method proposed in this section and
the method of Fleck and Cummings suffer from the
limitation that a number of space-dependent quanti-
There isn't
much one can do about this limitation with the one

ties must be repaced by cell averages.
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exception of the space dependence of the ur(g,to)
source term within a cell. In the method proposed
in this section, we have used this initial condition
for only one time interval. It is possible to use
the same initial condition for a number of subse-
quent time intervals so that the source term due to
collisions in the Monte Carlo calculation becomes
the dominant term after the initial condition term
has died out. The spatial position in the implicit
term is simply the position of the collision and
represents no additional difficulty with cell aver-
ages. We explore this method in Appendix A.

IV. EXAMPLE PROBLEMS
A, Introduction

The implicit Monte Carlo method of Sec. IIIL
was used to solve two slab geometry problems. The
apportionment of source photons and the computation
of cycle time widths was similar in the two problems.
These similarities will be discussed before consid-
ering the results of the individual calculations.

Both problems were driven by a blackbody source
of photons positioned on the left surface of a slab.
This blackbody source was held at a fixed tempera-
ture for the duration of the calculation. In the
Monte Carlo simulation, initial photon coordinates
were sampled from three separate sources at the
beginning of each time step. These sources included
the blackbody surface source, the explicit source
term of Sec. III.B, and the explicit source term
(if nonzero) in Sec. III.G. The total photon weight
(energy) due to each of these three sources is a
known quantity at the beginning of a time step.
The code distributed this total energy to the source
photons in such a manner that each photon began its
life history in the time cycle with approximately
the same weight. The number of photons to be start-
ed from each of the three sources was computed so
that the total number of photons in the photon bank
at the beginning of a time step was approximately
equal to an input constant. This total number of
photons in the bank at the beginning of a time step
is equal to the sum of the number sampled from the
three sources plus those photons that remain from
the previous time step.

The widths of the cycle time steps were allowed
to change in the course of each calculation. A

time-step width was computed on the basis of the

maximum fractional material energy density change
(6) that occurred for any cell during the previous

time step, so that

Atnew = (%) Atold : (44)

That is, the time step width is extrapolated to yield
an expected maximum fractional material energy den-
sity change of €, € was an input parameter for each
calculation. In addition, it was required that

At n < At € Atmax’ where Atm

mi:
input for each calculation.

and At are also
in max

B. Example Problem with Constant (Bopl

The first example problem was also used by Fleck
and Cummings.1 A 4-cm-thick slab is heated by a
1-keV blackbody photon source on the left face of the
glab. The macroscopic cross section is specified
by the simple expression

27 (1 _ e—\)/T) cm—l , 45)

ua(\’) = v_3

where v and T are measured in units of keV., The
temperature in all cells is initially set to 0.001
keV to keep op finite. A perfect gas model is used
with vy specified to be 0.008118 jerks/keV/cm3.
Using the perfect gas model also implies that B is

proportional to the cube of the material temperature,
Bt = B ren® . (46)

Because op(g,t) is inversely proportional to the
cube of the temperature for the cross section of Eq.
(45), the product (Bop) is independent of the mate-
rial temperature. Therefore, the extrapolation of
(Bop) with Eq. (17) is exact for this problem even
though the extrapolation of B or Op separately 1is
not exact.

We found that the extrapolation of B and o_,
based on the C1 value obtained with Eq. (18), tends
to "overshoot" since the extrapolation is based on
only the preceding time step. Therefore, for the
calculations presented here, the extrapolation of
Cl was based on a quadratic fit of the previous two

time steps.



The results of the implicit Monte Carlo calcu-
lation for various time-step control values of € are

given in Fig. 2. In these calculations, cell widths
of 0.4 cm were utilized and the total number of pho-
tons at the beginning of each time step was held at
approximately 24,000, The computed temperatures are
nearly independent of € fromt = 0 to t = 0.05 sh
since the input time-step minimum of 0.002 sh is
greater than the time-step width computed with Eq.
(44).

use larger time steps, but there seems to be little

Por t > 0,05 sh, the larger € calculations

difference in overall accuracy.

The curves shown in Fig. 2 at t = 0.4 sh are
The cell
temperatures exhibit significant fluctuations from

typical of the results at equilibrium.

time step to time step that are somewhat similar to
the fluctuations observed in Fig. 2 with different

values of €. However, the computed material energy

of the entire slab is relatively stable between sub-
sequent time steps with a standard deviation of

about 1,3%.

| I |
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Fig. 2. Temperature of slab heated by a l-keV

blackbody photon source at x = 0.
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In the calculations of Fig. 2, the path-length
estimator of Eqs. (38) and (39) was used for energy
deposition. This results in typical statistical
energy balance errors of from 1 to 3XZ relative to
the total material energy in the slab. Some calcu-
lations have also been made with a collision estima-
tor, which conserves energy exactly. The results
indicated that, for a fixed amount of machine time,
the path-length estimator seems to yield statisti-
cally better temperatures at near-equilibrium condi-
tions. However, it is difficult to draw conclusions
without comparing ensembles of such calculations.

The calculations reported in Fig. 2 used a cross
section and perfect gas model such that the product
(Bop) was independent of temperature., We turn now
to a more challenging problem where the product (Bop)

also depends upon the temperature,

C. Example Problem with (OPB) ~ 1/V/T

The cross section for this calculation was given
by

) = %"—:’;9 en ™t )

v
with v and T measured in units of keV. This is
approximately the cross section of iron for v and T
in the low keV range where inverse Bremsstrahlung

is dominant. The cross gection of Eq. (47) results

in a o_ of
P
149.52 -1
Op (r,t) =572 cm . (48)

{T]

The perfect gas model was again used with a y of
0.03820 jerks/cm3/kev. Thus, the product Bcp is
inversely proportional to the square root of the
temperature.

The photon source on the left face of the slab
was a 2-keV blackbody source for the duration of the
calculation. All photons reaching the boundary on
the left face of the slab were reflected back. All
photons reaching the boundary on the right face were
allowed to escape from the system. Ten equal mesh
intervals were again used across a 4—cm-thick slab.

The result of an implicit calculation with an
€ time-step control value of 0.05 are given in Fig,

3. The total number of photons at the beginning of




“re

each time step in this calculation was held at
approximately 24,000. The temperatures tend to vary
smoothly during the initial temperature rise, but
some fluctuation is observed at near-equilibrium
conditions as may be seen from the last two time
curves of Fig. 3. However, the overall results are
satisfying because the minimum time-step width used
here, At min, is 0.0005 sh. This time-step width

difficulties were encountered, and the temperature
distribution remained flat across the slab (except

for statistical fluctuations) as expected.

V. IMPLICIT MONTE CARLO METHOD WITH SCATTERING
A, Complete Emission Term

In this section, real scattering is included so

that the transport equation is

13LR) + 2V I(R) + ”:(V) I(R) = 2—" ua(\)) bv ur(g.c°) e

t
- g dt””
J cBop

-

t
- dt”
J ocBop t .
- - t
+I dt” 8(r,t?) e
o

t

-

x {8(x,t”) + J J I(g,v,g,t’)[ut(v) - J J{— us(wv‘,g-g‘)dv’dg’]dvdgz_

v . s - - - -
* f [‘. B (V0,2:07) I(r,v7,27,t) dv7dQ . %9)

\Y

is about a factor of 103 greater than the time-step
width where a pure explicit calculation becomes un-
stable.

This calculation was repeated allowing only
about 6000 photons in the bank at the beginning of
each time step. The results agreed with the 24,000
photon calculation, although statistical fluctua-
tions were somewhat greater.

In the initial calculations on this problem,
we found that a path-length estimator produced un-

acceptable instabilities at low temperatures.

-

Therefore, in the calculations reported here, a col-
lision estimator was used for flight paths such that
the number of mean free paths across a cell was
greater than 20. Otherwise, a path-length estimator
was used.

The initial conditions of this problem were
changed for one test calculation to observe the ap-
plication of the implicit method for decreasing tem-
peratures. All cells were specified to have an
initial temperature of 20 keV without any photons
present. Then the resulting temperature as a func~
tion of time was observed with reflecting boundary
conditions specified on each side of the slab. The

temperature decayed until a near-equilibrium condi-

tion was reached so that the photon field was approx-

imately in equilibrium with the material. No

% 1.0 2.0 30 3.0

Fig. 3. Temperature of slab heated by a 2-keV
blackbody photon source at x = 0,
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The ur(g,to) term and the S(r,t”) term have not
changed from the treatment discussed in Sec. III so
they will not be repeated here. However, the im-
plicit source term has changed so we will consider
it.

B. Implicit Source Term

The extrapolation of ¢ and B is still assumed
to be given by Eqs. (15) and (16) of Sec. III. The
total energy emerging from a collision (real scat-

tered plus pseudoscattered) is given by

e o (£,t%) Bz, t%) —Cz(tl—c’)
D2 = C Wi l1-e

2

v P J'J'v’ (U2 Ry dve R
) )V e == =

1 J’ [ v’
+ w ~ — va_’v‘n Q;.Qaa d\)”dQ” (50)
i ut(v ) v lls( 3¢ Tad ) LI

where the photon coordinates upon entering the col-
lision are designated to be r,v",Q7,t”. The last
term on the right-hand side of Eq. (50) is identi-
fied as & real scattering term while the remainder
is a portion of the photon source due to emission.

A number of interesting observations may be
made for various scattering interactions. We first
note that when us = 0, Eq. (50) reduces to Eq. (27)
in Sec. III with pure absorption. Another interest-
ing case occurs when all scattering is coherent.
Then the right-hand bracket of the first term on
the right-hand side of Eq. (50) becomes
ua(v‘)/ut(v'). This means that coherent scattering
does not contribute to the emission term in agree~
ment with energy conservation. A scattering kernel
where all photons suffering a real scattering colli-.
sion will lose energy is another case of interest.
Then the emission term becomes greater than for the
corregponding case of pure coherent scattering.

This makes sense physically since the real scatter-
ing is feeding energy to the material. Finally, one
may consider a acattering kernel so that the major-
ity of the radiation gains energy at a collision.
Then the emission term in Eq. (50) becomes negative
becauge the scattering of radiation is taking energy,
from the material. This type of scattering, which
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will be discussed later, introduces certain problems
in the Monte Carlo.

The last term on the right-~hand side of Eq. (50)
may be treated with an analog scattering method. A
real scattering is allowed to occur with probability
M (v)/u (v7), where

u V) = f J M (VHVTT,Q7.Q7 YV R™T . (51)

For a real scattering event, the new energy and di-
rection of flight are selected with the kernel
us(v'+v",gf°gf’) and the final photon weight is
multiplied by the factor v’™“/v~.

Irrespective of the result of sampling for the
real scattering, the first term on the right-hand
side of Eq. (50) must also be treated at each colli-
sion. For the method described here, we let A be the
value of this term and first consider the case when A
is greater than zero. Then 1if A/wi is less than uni-
ty, a pseudoscattering is allowed to occur with prob-
ability A/wi. If A/wi is greater than unity, we set
n to the largest integer that is less than or equal
to A/W,, increase n by one with probability (A/Wi)—n,
and allow n photons to emerge from the collision.

For such pseudoscattering events, the new time is se-
lected from Eq. (28), the direction of flight is se-
lected from an isotropic distribution, and the fre-
quency is selected from the density function
ua(v)bvlop. These photons, which suffer a pseudo-
scattering event, emerge from the collision point
with the incoming photon weight Wi.

For scattering kernels where A may be less than
zero, the situation is more complicated. Of course,
one could allow negative weights, but this tends to
increase statistical errors. There are at least two
alternatives that appear practical. The first alter-
native is discussed by Fleck2 and involves absorbing
the loss term in Eq. (50) into the S term as eval~
vated at t°. Because this approach has already been

discussed by Fleck, we consider a second alternative,

- which is to tabulate a quantity that we call Q for

each cell. Then whenever a collision occurs where

A 1is negative, Q is changed as

Q= (@ +A . (52)

However, if a collision occurs with a positive
A, the value of Q for the cell is checked. For a Q

e



of zero, the emitted photons are sampled as dis-
cussed before for positive A. For a Q less than

zero but such that [QI > A, Q is increased as

Q= (@ 4 +4 (53)

and the history of the photon i1s terminated. For a
Q less than zero but such that |Q| < A, Q is set to
zero, A 1s reduced by the old value of Q, and the
emitted photons are sampled as discussed before for
this new positive value of A.

This procedure is approximate in the sense that
the spatial position within the cell and the time
of the collision are ignored for tabulating Q. The
procedure also may result in Q values at the end of
the time interval that are nonzero. Such Q values
should be added to the ur(g,to) source term for the
next time cycle; i.e., the ur(g,to) source term is

reduced.

The inclusion of scattering in the implicit
Monte Carlo requires sampling the scattering kernel
for a new photon energy and direction of flight at
real scattering events. This sampling is straight-
forward for Thompson scattering and there are also
numerous schemes proposed for sampling from the
Klein-Nishina differential cross section. For the
so-called inverse Compton scattering event, where
the electron velocity is not negligible so that the
photon may actually gain energy at a collision,
sampling techniques are not so well developed. 1In
the next section, & Monte Carlo simulation of in-

verse Compton scattering is discussed.

VI. SAMPLING INVERSE COMPTON SCATTERING EVENTS
A. Introduction

The selection of an emerging photon energy from
the Klein-Nishina differential cross section may be
accomplished with a variety of well-known tech-
niques. The method suggested in Appendix B utilizes
a fairly efficient rejection technique for incident
photon energies that are less than three times the
rest mass of an electron, but samples directly with~
out rejection for the photon energies greater than
three times the rest mass of an electron. The com-
puter time required for this method is not much

greater (perhaps as much as 25X for some photon

energies) than that required by schemes that sample
an approximate inverse functiomn.

The selection of an emerging photon energy,
after a Compton scattering, becomes much more diffi-
cult when the electron velocities are large enough
in magnitude so that they cannot be neglected. Not
only does the selection of the emerging photon energy
become more complicated, but also the sampling of the
scattering angle then depends upon the velocity of
the electron.

In the sampling scheme developed here, the
electrons are assumed to have a relativistic Maxwel-
lian distribution of velocities at some temperature
T. The velocity of the electron that scatters the
photon is selected with a rejection technique. A
Lorentz transformation of the incident photon energy
is then made to the rest frame of the electron, the
emerging photon energy and scattering angle in the
electron rest frame is selected from the Klein-
Nishina differential cross section, and a Lorentz
transformation is made back to the laboratory frame
to compute the final photon energy and scattering
angle in the laboratory frame. The Lorentz trans-—
formations do not require a great deal of computation
time because only a transformation of the energy and
scattering angle is required.

The Compton scattering law for a relativistic
Maxwellian distribution of electron velocities is
discussed in part B of this section. A method to
sample from this scattering law is proposed in part C
and a description of a subroutine that does this

sampling is given in part D.

B. Discussion of the Scattering Law
The Klein-Nishina differential cross section

for a Compton scattering from a free electron is
valid in the rest frame of the electron. The cor-
responding macroscopic Compton cross section in the
laboratory frame, when the electrons are in motion

is given by 4,5

(VP22 ,  (54)

- - D
us(\»\, 227) D’ Hge Ve Vere

where
2 1s the photon direction of flight,
v is the photon frequency,
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D=1-Qv/lc , (55)
D" = 1- Q% v/c s (56)

v 1s the electron velocity in the laboratory
system,

A= [1 - (v/c)zl w2

’ (57)
and Uge ig the macroscopic Klein-Nishina cross sec-
The sub-

scripts e on v and Q also denote their observed

tion in the rest frame of the electron.

values as seen from the rest frame of the electron.

The total scattering cross section may be ob-
tained by multiplying Eq. (54) by dv” dQ” and inte-
grating over v’, °. Since dv” dQ” = AD’dv; dg;,4
the resulting cross section is

HS(V,Q) = j J A D uae(ve*ve’ge-’ge) d\)e dge

=AD Llse(ve’ge)

s (58)
where the absence of arrows denotes an integration
over the respective primed coordinate. The result
of Eq. (58) could also be obtained by using an in-
variant transformation for total cross sections.4’5
The cross section in Eq. (58) is due to elec-
trons traveling with a velocity v. The cross sec-
tion due to a distribution of electron velocities
is obtained by multiplying Eq. (58) by the proba-
bility that an electron will be traveling in a di-
rection that is within dv about v and integrating
the resulting expression over v. Thus we write the
macroscopic cross section, us(v,g), due to a distri-

bution of electron velocities as

H (V@) = J ADu (v8,) 8 dv. 59

where g(v) describes the distribution of electron
velocities in the laboratory frame. For the con-
sidgracions here, we will assume that g(v) is an
iéotropic relativistic Maxwellian distribution.

Hence, we write g(v) as

gWdy = £(v) v¥ avag (60)
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where

5 o cZA/kT
m Ae ©

[+ ) (61)
4mckT Kz(moczlkT)

f(v) =

o is the rest mass of the electron, T is the average
electron temperature, and KZ(Z) is the modified
Bessel function of the gsecond kind of oxder two.

f(v) 1s normalized so that
< 2
4 J f(v)vidv = 1 . (62)
o

If we now define the polar angle of gv to be the

cosine of the angle between { and v,

i

MU (63)

the corresponding integration over the azimuth angle

in Eq. (59) may be readily performed. Therefore,

the Compton cross section is given by

1l (c
v
us(v,Q) - J-l Jo A(l W E) use(\’e'-f—ze)

x 2mv? Fdvan, (64)

where the Lorentz transformation gives the following

relation between ve and va,
v
ve = w(l-u %) . (65)

C. Sampling from the Scattering Law

It is apparent, from Eq. (64) and the consider-
ations which led to Eq. (59), that one could sample
the emerging photon energy R° and frequency v* in
the laboratory system with the following steps.

(a) Sample an electron velocity v and polar
angle u, with respect to the incident beam with the
two~dimensional density function

)‘(1 N §) use(ve’ge) 2y’ f(v) . (66)
TR

h(uv,V) =




e

(b) Compute ve from Eq. (65) for the v and H,
sampled in step (a).

(c) Sample v’ and Q' from the Klein-Nishina
cross-section Ay e(ve ve’—e*ge)

(d) Transform back to the laboratory system
as discussed in Appendix C.

The previous scheme requires that one sample
uv and v from the two-dimensional density function
of Eq. (66). This appears impractical due to the
presence of use in the density function. One may
therefore replace step (a) of the previous scheme
with the following procedure.

(a) Sample v from the density function
4 vzf(v).

(a°) Given the v of step (a), sample My from
the density function (1 - u, %)/2; -1 < H, < 1.

(a””) Accept the pair M,V with probability

v, .8)

Hge Ve —e
[Ause(ve

where the numerator is evaluated at the U,V select-
ed and the denominator is the maximum value that the
numerator may assume, If the pailr is not accepted,
return to step (a).

This scheme is equivalent to sampling from
h(uv,v) of Eq. (66) since

Probability of accepting Probability of sam-
a v in dv about v and ~ {pling a v in dv about

a uv in duv about uv v

Probability of sampling a uv‘
x
in duv about uv

Probability of accepting the
uv,v pair

: v\ du v ,0)
= 4‘nv2f(v)dv <1 - _>_V se e’—e

Vel 2 [Ause e’ 4

It should be noted that Ause(ve —e) is just propor-
tional to the Klein-Nishina microscopic cross sec-
tion since the electron density in the rest frame

multiplied by A is the electron density in the

Jaboratory system, which is assumed to be constant.
Because the Klein-Nishina cross section decreases
monotonically with increasing ve, the maximum value
of Ause(ve,ge) occurs at the minimum ve; that is,
from Eq. (65) the minimum Ve is zero corresponding
to uv =1 and %-= 1.

The efficiency of such a scheme was found to be
nearly independent of the electron temperature, but
depends markedly on the incident photon energy. The
efficiency curve in Fig. 4 was obtained for an elec-
tron temperature of 0.2 electron rest mass units.
The majority of the collisions generally occur near
the left edge of this graph (say less than 0.2),
therefore the overall sampling efficiency may lie
around 75%. If problems become important with higher
photon energies, it will be worthwhile to devise a

more efficient scheme for large photon energies.

D. Description of Subroutine Comet

A subroutine has been written to utilize the
previously discussed sampling method. This subrou-
tine has been written specifically for the MCG code,
but because it is self-contained it may also be use-
ful in other codes for either production runs or as
a cross check agalnst other codes.

The technique used to sample v from the density
function Anvzf(v) is discussed in Appendix D. The
tables required for this sampling method are con-
structed with a CALL COMET (-1) statement before the
Monte Carlo sampling begins.

A photon emergy (ENWl) and the cosine of the
scattering angle (ANEW) in the laboratory system are
sampled with a CALL COMET (0) statement. The elec-
tron temperature at the collision point (TELC) and
the incident photon energy in the laboratory system
(EOD1) are the only information required by the sub-
routine. These are made available to the subroutine

through a labeled common block, CTN1l. All energies

1.0 T T T
gaas- =
5i§ 0.6 - b
EZ o4l -
O o
w02

0 ] 1 1

o 0.5 1.0 1.5 2.0

incident Photon Energy
(units of electron rest mass)

Fig. 4. Monte Carlo sampling efficiency vs
incident photon energy at an electron
temperature of 0.2.
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are in units of the rest mass of an electron. A
representative CDC-7600 computation time required
by COMET is about 120 usec for an incident photon
of energy 40 keV.

The subroutine will also compute the ratio of
the laboratory cross section, due to Maxwellian
electrons at a temperature (TELC), to the corres-
ponding Klein-Nishina cross section neglecting elec-
This
ig obtained with a CALL COMET (1) statement, where
(TELC) is the temperature and (EOD1l) is the photon

tron motion; i.e., at a temperature of zero.

energy in the laboratory system. The subroutine
returns the cross section ratio (CMICS) and the
average relative energy gain (PECA), or loss, of the
The variable PECA
is defined as AE/EOD1, where AE 1s the average

energy gain, or loss, in a Compton collision for an

photon in a Compton collision.

incident photon energy of EODl. The cross-section
ratio and the average energy gain, or loss, are ob-
tained with a linear-linear interpolation in Table I.
The numerical values in Table I compare favorably

to those reported by Fraley.6

The total Compton cross section in barns per
electron in the laboratory system may be obtained
by multiplying the cross section ratio by the zero
temperature Klein-Nishina expression. This may be
done in the code by following the CALL COMET (1)
statement with TCS = 0.4991*CKLN(T1)*CMTCS, where
Tl is the photon energy in the laboratory system,
CMTCS 18 the cross-section ratio previously returned
by COMET, and CKLN is a function routine.

The average photon energy exchange as obtained
by Monte Carlo sampling with COMET has been compared
to the corresponding numerical values in Table I
for a number of incident photon energies and elec-
tron temperatures. These comparisons agreed within
gtatistical errors. A calculation was also made of
the average cosine of the scattering angle as a
function of the emerging photon energy for an inci-
dent photon energy of 20 keV. There was no signifi-
cant difference between the Monte Carlo results and
numerical calculations.

VII. CONCLUSIONS

The proposed implicit Monte Carlo scheme ex-
hibits gignificant stability advantages over a
pure explicit calculation. This stability advantage

has also been reported in previous calculations by
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Fleck and Cummings1 using a different implicit method
than the method proposed here.

In deriving the implicit scheme reported here,
we have sampled directly from density functions
without making simplifying assumptions whenever pos-
sible.
scheme than that obtained through approximating ex-

This resulted in a more involved sampling

ponentials by first-order expansions and by time
centering. The small increase in computational
effort appears to be more than offset by the advan-
tage of a more rigorous treatment of the time var-
iable.

The simple, pure absorption example problems
have indicated the feasibility of using the implicit
scheme proposed in Sec. III. We anticipate extending
this implicit approach to more complex problems of
such a nature that the real scattering treatment
given in Sec. V would be used with the treatment of
inverse Compton scattering as discussed in Sec. VI.

A basic statistical problem in computing non-
linear radiative transport with an implicit approach
is in the scoring of energy deposition. Each esti~
mator tends to suffer from some disadvantage. For
example, the path-length estimator, as used in the
example problems, does not conserve energy. How-
ever, energy is conserved with a colligion estimator,
but statistical errors are large in thin cells.

These considerations indicate that the use of a
modified collision estimator should be examined.
One possibility is to sample the distance to a col~
lision point with the cross section (1 - f) ua(v)

and to multiply the photon weight by the factor

J‘S
- fu (v)ds
e ° :

after each flight path. The change in the photon
energy is then deposited in the respective cells.
Since the factor (1 ~ f) changes along a flight path,
the sampling from the cross section (1 - f)ua(v)
requires some special conaiderations. The technique
proposed in Ref. 7 for sampling distances to col-
lision points with varying total cross sections is
applicable. This method of depositing energy is

presently being investigated.
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TABLE I

SCALING FACTOR AND AVERAGE PHOTON ENERGY LOSS

8glectron Rest Mass Units.

Electron Teggeraturea

0.00 .0400 .0800 .1200 .1600 +2000 .2400 .2800 .3200 .3600 .4000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0000 - ,1765 - .3875 .6355 - .9223 -1.2495 -1.6185 -2.0304 -2.4860 -2.9870 ~-3.5330
1.0000 .9931 .9861 .9789 .9718 .9646 .9575 <9504 L9434 .9364 .9295
.0368 - .1132 - .2867 .4836 - ,7037 ~ .9466 -1.2117 -1.4984 -1.8060 -2.1340 -2.4810
1.0000 .9882 .9764 .9648 .9533 .9419 .9309 9200 .9094 .8991 .8891
.0681 - .0624 - .2100 .3741 - ,5542 - .7495 - .9594 -1.1832 -1.4200 -1.6700 -1.9320
1.0000 .9847 .9696 .9548 .9404 <9264 .9129 .8998 .8871 .8748 .8630
.0953 - .0202 - .1490 .2903 - .4435 - .6081 - .7833 - .9686 -1.1635 -1.3674 -1.5799
1.0000 .9820 .9645 +9475 .9311 .9153 +9001 .8854 .8714 .8578 .8448
.1191 .0154 - .0990 .2234 - .3572 - .5000 - .6512 - .8102 - ,9767 -1.1503 -1.3304
1.0000 .9800 .9606 .9420 .9241 .9070 .8905 .8748 .8598 .8453 .8315
.1402 .0460 - .0570 .1683 - .2874 - .4139 - .5473 - .6871 -~ .8330 - .9846 -1,1416
1.0000 .9784 +9576 .9377 .9187 .9005 .8832 .8667 .8508 .8357 .8213
.1591 .0728 - .0210 L1219 - ,2294 - .3432 - .4628 - .5877 - .7179 - .8528 - .9922
1.0000 .9771 .9552 .9343 .9144 .8954 8774 .8602 .8438 .8281 .8132
.1761 .0966 .0104 .0820 - .1801 - .2836 - .3921 - .5053 - .6229 -~ .7446 - .8702
1.0000 .9761 +9532 .9315 .9109 .8913 .8726 .8549 .8380 .8219 .8065
.1917 .1178 .0381 .0471 - 1374 - .2324 - .3319 - .4354 - .5428 - ,6538 - ,7681
1.0000 .9744 .9502 .9272 .9054 .8848 .8652 .8466 .8289 .8122 .7962
.2191 .1544 .0850 .0111 -~ .0669 - .1486 - .2339 - .3225 - ,4142 - .5086 - .6058
1.0000 .9730 .9474 .9233 .9004 .8788 .8583 .8390 .8206 .8031 .7865
.2480 .1921 .1322 .0689 .0022 - ,0675 - .1401 - .2152 - ,2927 - ,3725 - ,4543
1.0000 .9706 29428 .9166 .8920 .8687 8467 .8259 -8062 .7876 .7699
3036 .2618 <2174 .1707 .1217 .0708 .0181 - .0364 - .0923 - ,1498 - .2085
1.0000 .9689 .9396 .9120 .8860 .8615 .8385 .8167 .7961 7767 .7582
. 3445 .3113 .2762 +2393 .2008 .1608 .1195 .0769 .0332 - .0115 - .0572
1.0000 +9663 .9347 .9051 .8772 .8511 .8265 .8033 .7815 7610 .7415
4026 .3794 .3549 .3293 .3026 2749 +2463 .2169 .1868 .1560 .1245
1.0000 <9644 .9311 +9000 .8708 8435 .8178 .7937 L7711 <7498 .7297
4431 .4255 .4070 .3876 .3674 .3464 +3248 .3025 .2797 .2564 .2326
1.0000 .9630 .9284 .8960 .8659 .8376 .8112 .7864 .7631 .7413 .7207
.4735 .4596 <4448 4294 .4133 +3965 .3793 .3615 .3433 .3247 .3057
1.0000 .9618 .9261 .8929 .8619 .8330 .8059 7806 +7569 .7346 .7136
" 4975 .4861 +4740 +4612 4479 4341 .4199 4052 .3901 .3747 .3589
1.0000 +9600 .9227 .8882 .8560 8260 .7981 7720 <7475 <7246 .7031
.5335 5253 +5165 +5073 4976 .4876 4771 +4664 +4553 +4440 4324
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APPENDIX A

A MORE GENERAL IMPLICIT METHOD IN THE ABSENCE OF SCATTERING

A. General Considerations

The technique discussed in this section paral-
lelg the method of Sec. III except that the initial
condition ur(g.to) ig used for a number of subsequent
The initial time will again be des-
ignated as t° and the subsequent boundaries of the
time int;rvals will be designated as tl, tz,.... tn,

N+

veey € .

time intervals,

Then for each time interval, op and B

gre extrapolated as

altered slightly. Rather than repeat such a deriva-
tion, we give the results for all but the first time
interval. The first time interval (denoted by

n = 0) is treated exactly as described in Sec. IIIL
because the initial condition for this time interval
has not changed. The term containing S is not con-
sidered here since its time-dependent form varies

from problem to problem.

The total photon energy per unit volume pro-

duced by the ut(ggto) source term is given by

n-1
+ i
- z cS(E,ti)op(E_,ti) et
a © op(g,tn) u (z,t%e 1=0 —C;(:n+1-tn)
D1 - a l-e ,n=1,2, ..., N , A-4)
[+
2
where C; is defined as
a e/ (e
op(g,t) = op(g,t ) e ’ ¢t
n n n 1 . (A-5)
C,=co (r,t) B(r,t) + ——rre
2 P (tn+1 - :n)
t"<e<e™ ) n-0,1, ..., N, (a-1)
For a given time interval n and cell j, the energy
Cn(t-tn)/(tn-tn-l) DLAVj is distributed to a number of source photons.
B(z,t) = Bz, t™) e 1 , The initial time for each of these photons is sam-
pled as
P<e<e®™ | pmo0,1, .., N, (a-2)
n, ntl n
a 1 ~C (7 "-t)
t=t - —;~£n 1-E]1-e , (A-6)
C
2
n_1l, [op(E'tn 1) B(E'tn)
C, =5 4n — ]
12 lgp(g,tn) B(E,tn 1) the initial position is selected randomly within
the cell, the initial direction of flight is selec-
n=0,1, e.c, N , (A-3) ted from the density function ua(v) bV/O as eval-

where these are generally cell-averaged quantities
and where the superascript is used to denote the
time interval.

These definitions serve to specify the source
terms in Eq. (14) so that the sampling scheme may be
constructed as given in Sec. III, the only differ-
ence being that the initial condition has been

18

uated at the beginning of the time interval.

The implicit source term will now be consider-
ed.
time interval m so that t" < t° <

A photon collision is assumed to occur at a
tm+1. Due to this
collision, the photon energy produced in this time
interval is

m € T (6t Bt
D2 = cm wi
2

[ -c';(cm"l-tm)]
1-e -(A—7)



Ay

The collision may be treated as a pseudoscattering
event as discussed on p, 5 for a base time t™ rather
than t°. The new photon time after the collisj:n is
sampled as

t=t" -

-C;(tm+1-tm)]
. (A-8)

l—znl-g[l-e
m
2

However, the initial condition on ur(g,to) is not
respecified at tm+1 unless m = N, therefore this
collision may also produce photons during subsequent
time steps. To allow for this, an implicit photon
bank is established. At such a collision, with
probability

~e8(r,t™) o (z,t") &=y
e

’ (A-Q)
a photon is stored in the implicit bank with a cor-
responding weight

s o
)
i\, m m-1
il - cwB(e,tM e FF (A-10)

and its spatial coordinates are also put into the
bank. Then during the next time step, such a pho-

ton produces the photon source energy

D;rf-l o_(z, tm+1) - C;ﬂ-l (tnﬂ-Z_ tnrf-l)
- P -
mtl

¢,

l1-e (A-11)

with the initial photon time selected as

mtl 1

s
¢,

2n {1 - £

—C;+l(tm+2—tm+l)
X |1 -e . (a-12)

The total photon energy of Eq. (A-1l) may be distri-
buted uniformly to an integer number of photons to
conserve expected weights. These then become a real
photon source for the time step. In addition, with
probability

o+l

-cB(x, t:mH') op ,t tm+2—tn*1

)( ), @-13)

e

a photon is retained in the implicit bank with weight
Dm+2 - Dm+1
2 2
[{.e., survives the probability check of Eq. (A-13)1],

If the photon is retained in the bank

at the next time step m is advanced by one and the
steps represented by Eqs. (A-1l1) to (A-13) are re-
peated. In all cases, the direction of flight of the
implicit source is selected isotropically and the
frequency is selected from the density function
ua(\))bv/op as evaluated at the beginning of the cur-

rent time interval of interest.

B. Summary of the More General Implicit Method

This general implicit method is clearly more
complicated than the method described in Sec. III
although the computation time required per photon
history may not differ greatly for the two methods.
The programming effort required appears to be consid-
erably different. The major difference is the re-
quirement for an implicit photon bank, which adds
one more complication to a computer program already
complicated with a constant maze of data manipula-
tions.

The scheme discussed in this appendix does have
definite advantages, but in view of the disadvantages
(especially programming), it seems prudent to gain
more experience with the method of Sec. III before

trying this more general approach.
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APPENDIX B
SAMPLING FROM THE KLEIN-NISHINA DIFFERENTIAL CROSS SECTION

A scheme to sample an emerging photon energy
from the Klein-Nighina differential cross section is
given in Fig. B-l.

in units of the rest mass of the electron, R” 1is the

8 is the incident photon energy

emerging energy selected, and u is the cosine of the
scattering angle. Three different methods are used
depending upon the incident energy of the photon:
0<B8<0.4, 0.4 <B< 2.9, 2,9 < B, For

0.4 < B8 < 2,9, a rejection method proposed by Kahn
in an unpublished report and summarized by Goertzel

and Kalos8 (with errors) is used. For B < 0.4, a

rejection technique that is more efficient for small
B is used. For B > 2.9, the Klein-Nishina cross
section is expressed as a linear sum of four density
functions. All coefficients in the linear sum are
positive éo that in a Monte Carlo sampling one of
the four density functions is selected randomly with
a probability proportional to its coefficient. The
final energy is then selected from that density
function. This sampling may be done analytically

for all four density functions.

APPENDIX C
TRANSFORMATION FROM ELECTRON REST FRAME TO LABORATORY SYSTEM

The gelection of the electron velocity was dis-
cussed in Sec. VI. Here, we will summarize some

useful transformation properties between the labora-
tory frame, denoted as the jg frame, and the rest
frame of the electron, denoted as the jz frame.

e

The basic mathematical relationships are lifted di-
rectly from Everett's Relativity Not:ebook.5 His

notation will also be used here.
The interaction in the 22 frame is depicted

in Fig. C-1. Here, the electron velocity has arbi-
trarily been chosen to be in the negative x-~axis

direction. Then from Eq. (V), Ref. 5, p. 24, the

electron velocities in jz are

Yx1 T \Vaa €1
c
‘%b4,
& 7
\\‘\
——— e N e Electron
Negative g ~ Yo
X direction N
~
Fig. C~1. Photon scattering off of electron injz

. frame,
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v, =0

(c-3)

where the subscript 1 denotes the electron. The

momenta of the photon in thejz frame are

-
-

hv -
P, = = o cos 6 , (Cc-4)
- hy”
py2 - - —E—-sin 0 R (c-5)
and
P;z =0 . (C-6)

where the subscript 2 denotes the photon and it is

arbitrarily put in the x-y plane. The momenta of the

photon in the jz frame may be obtained from Eq. (PM),
e

Ref. 5, p. 30, as

up”’ - u
- - ) o AV - [
pxz A<Px2 + c > P <C08 8” + —C > ) (C-7)

=" = -hv”
Pyy

y2



—’LB - o.4l—+——le - 2.9]-*—’@

2 = - -
Cg = 1/8 c, = 2/8 Cy = C, + Cg c,=1-C¢,- 26 }——>

—> C_ = 28 T r C,=1+C.r cC,=¢C

l

+ .
7 = (€4 +C,Cq + C Ty + 1/C)/C T, c, - 2, ()

@———02-1/3‘ Cg = 28 | Cy=Cg+1] C5 = Cg + 9| ¢, = C,/c,

l -
DT I v
Cg = Cy = CC,H + 1 > Cg + 1/Cy - 2r, ()

+
Cg = 1+ Cgr, 140 - ey /c,l - £, ()

RN

©

@—_’0-1/82 > C, =1+ 28 C'}'(l-l/cz) C, =2/ —>
8 7 2 2 7 3

Cg=1-C,- 2084}.__..' ¢, = Cg n(C,) |_.l Cs = 1/(C, + 2C, + cl‘)]__,

(¢3)]

- - + -
z c, = C,Cs ~c -, cg=¢, - ——()

C9 =14+ 28r1

Cy = /(1 - 4:1/(03 + 4)] l——-(:)

SENC

Cq = 1/»11-21'102 ‘

Fig. B-1. Scheme for sampling the Klein-Nishina differential cross section.




and

P,o = pzZ =0 . (C-9)

The energy of the photon Ez in the z frame may be
e

obtained from Eq. (cPE), Ref. 5, p. 31, as

u -u
E2 - A(-c—o <:p;‘2 + EE) = )\hv‘(To- cos 87 + 1) . (C-10)

This equation is used to compute the incident photon
energy in the electron rest frame for the subsequent
selection of the new energy and scattering angle
from the Klein~Nishina differential cross section in
this rest frame.

The precollision photon direction of flight in

the z frame may be obtained from Eq. (¥), Ref. 5,
e

p. 25, as

u) u
= {~cos 67 + e 1 - -c—o cos 6~ , (c-11)
a’ -gin 0~
a, = 2 . . (c-12)
y2 v, u vy, u ’
A—=1{1+ 7 A{l - — cos 8~
v; c

and

8, " 0 ’ (c-13)

where the a's represent direction cosines. Assume
that in the selection from the Klein-Nishina, with
incident energy 22, the cosine of the scattering

angle was Uy and the aximuth angle selected was §.

Then the finai direction cosines in the 2 frame
e
are (Cashwell and }.!ver:ett,9 p. 106)

A-u:a sin § ,

v (c-14)

8t "~ ax2us -

22

/ 2
ay4 - ayzus + V1 - Wy 8.9 sin 6 . (C-15)
and
a,=- V1 - ui cos § R (C-16) ..
which may be written as ’
1 uO -
1) u <c - cos 8 ) Uy
1- 22- cos 9'>
V1l - uz gin 07 sin §
+ 8 (c-17)
A
and
a . = 1 —sin6u+/1_u2
v& u, 8 8
<1 - — cos 6’) A
c
Y
x\ T~ cos 0°) sin § . (c-18)

Here, the subscript 4 denotes the emerging photon.

The inverse transformation of C-11l to C-13 gives

- uo uo
4 " 8% T ¢ / - T %4 (c-19)
and
a
al, = —I% (C-20)

v4 - u, ¢
A<1 - axl;)

The cosine of the angle through which the photon

scatters in the 2 frame is given by u” as
Wo=a 8y + ay2 aylo + 822 %24

= - cos 6”7 a;a - gin 8”7 a’ . (c-21)

vb4

Combining Eqs. (C-17) through (C-20) into Eq. (C-21)
gives




-

Yo
u* = {-cos 8° |[{~— - cos

()

6’) Hy

sin 0~

ﬁ 2 2
- U
+ ——2= gin 0° sin&-—°+—‘2’-cos 87| -
A c c
sin 67 u
x -—A——us+/1-u§<—°-cos 6’) gin §
¢

x 8in 6° sin §|.

u
-2 2
cA

(c-22)

It is clear that the azimuthal orientation of the
electron is random, and hence the azimuthal scatter-
ing angle must be random. Therefore, Eq. (C-23) for
the laboratory cosine of the scattering angle of the
photon along with the selection of a random azimuth-
al laboratory scattering angle determines the emerg-
ing photon direction of the flight in the laboratory
gsystem. The final energy in the laboratory system

is obtained from the inverse transformation

u u
. o o
E4 = x(c CPx4 + E&) = )‘<— c Eloaxlo + Elo)
Yo
- AEI‘ - T A, +1 s (C-24)

or from the previous definition of a s

(c-25)

This may be simplified somewhat to

-y
o= usl-——cose‘-

c

2

e

c

2

0 2 Yo
— 8in 86°) + — cos 68~
c

sin & 1--u8 v,

cA

u u
8] -2y (=2 - cos 8
c '8 \c

u sin €
x {1 -2 cos 8”) -
c
Yo
+ {1 - — cos
c
sin 87 sin § 1—u2 u
_ 8 o
cA

)

(c-23)

It is important to note that in spite of the com~
plexity of the transformations, only Eqs. (C-10),
(C~23), and (C-25) are needed in the Monte Carlo.
Many of the terms are similar so that relatively few
operations are required. Because of this, the major-
ity of the computation time is involved in the se-

lection of the_electron velocity and direction.
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APPENDIX D

SAMPLING THE ELECTRON VELOCITY

Tables for sampling the electron velocity are
stored at the five electron temperatures of kT/moc2
= 0.001, 0.04, 0.1, 0.2, and 0.4,
sent equiprobability bins for the kinetic energy so
that the 1tP

puted from the inverse function

The tables repre-

entry denoted by E1 in a table is com-

(p-1)

where a simple transformation has been made from the
velocity space of Sec. VI to energy space, i.e.,

E= (moczlkT)(k-l). A double linear interpolation
is used between point values in the table and be-
tween the electron temperatures of the two tables
that gpan the electron temperature of interest,

The linear interpolation between tables has satis-
factory accuracy. However, at very small kinetic

energies or very large kinetic energies, significant

errors result from using only 128 equally probable
bing. For low energies, the density function varies
like vE. This is only significant for the first

mesh interval El < E < E_, 8o that in this mesh inter-

2
val the energy E is selected as

2/3

E = E_.R , (D-2)

where R is a random number. The problem is not so
easy to correct for large electron kinetic energies.
Therefore, the equal probability bins actually dif-
fer somewhat from Eq. (D-1) and are given in Table
D-I. The use of this bin structure results in an
accuracy that is almost as good as that obtained by

using an equally probable table of length 1024,

TABLE D~1
BINS FOR SAMPLING ELECTRON ENERGY

Probability
Entry Numbers Increments
1 to 121 1/128
121 to 129 1/256
129 to 137 1/512
137 to 153 1/1024
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