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NONLINEAR RADIATION TRANSPORT SIMULATION

WITH AN IMPLICITMONTE CARLO METHOD

x

by

L. L. Carter and C. A. Forest

ABSTRACT

A method ia developed to solve the radiative transport equation
with Monte Carlo. The photon source aT4 ia expressed aa the sum of an
extraneoussource term plus a pseudoscatteringterm by utilizing the
radiative energy balance equation. This resulting photon source is
sampled directly in the Monte Carlo calculationwith an extrapolation
of croaa aectiona and equation-of-statedata from the previous time
step.
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I. INTRODUCTION

An implicitMonte Carlo method has been report-
1

ed recently by Fleck and Cummings and by Fleck* for

the simulationof nonlinear radiation transport.

They used an effective scattering technique to gain

improved accuracy and to incorporatestability in

the calculation. The results of preliminary calcu-

lations by Fleck and Cummings indicated that their

proposed method has better stability characteristics

than a previously reported fully explicit calcula-

tion.
3

Later calculationsindicate Improved accuracy

provided opacitiea and equation-of-statedata are

extrapolatedin a proper manner.

The purpose of this report is to propose an

implicitMonte Carlo method that appears to have

certain advantageaover the method of Fleck and

Cummings. Specifically,a more exact treatment of

the coupling between the material energy density

equation and the transport equation la provided,

which should enable the use of longer mesh intervals

in time, an irneortant statiattc.al consideration.

l%~a method aleo removes the time centering parameter

a that was present in Fleck and Cmmmings’method.

The mathematicalformulationof the radiative

transport ia discuaaed in Sec. II. An implicit Monte

Carlo method for solving the radiative transport

problem in.the absence of scattering La given in

Sec. 111. In Sec. IV, some numerical reaulta of

applytng the implicitmethod of Sec. 111 on some ex-

ample problems are given. The implicit Monte Carlo

method is generalizedfurther in Sec. V to include

scattering. The treatment of inverse Compton scat-

tering with Monte Carlo is discuesed in Sec. VI.

II. MATHEMATICALDESCRIPTION OF RADIATIVE TRANSPORT

General Discussion

The mathematicaldescription of radiative trans-

port ia discussed in considerabledetail by Pomran-

Ing.4 The paper by Pomraning provides a good refer-

ence for the approximetionainvolved in various math-

ematical descriptionsof radiative transport, there-

fore we will omit such a discussion here. For our

purposes we will utilize the transport equation in

the form

*?ZJQ+Q _ ● ~I(R) + Pt(v) I(R) = Pa(v) B(v)

+
IJ

v
~ Pa(V-%&~O) I(r,v-,fJ”,t)dvOd~”, (1)

where R is a shorthandnotation denoting a space

position ~, a direction of flight fl,and a frequency

v at time t. I(R) is the specific intensity, and

B(v) is the Plenck function,



B(v) - + ~v ~TC’(’b ‘
(2)

where pa ie the absorption coefficientcorrected for

induced effectw ae

Va(V) = B:(v)/[1+ c2B(v)/2hv3] ,

and pt is the tofal attenuation coefficient

(3)

)lt(v) - Us(v) + Hpn(v+v”,~e$l-)dv”d~”. (4)

We have asaumed local thermodynamicequilibrium

to obtain the tranaport equation in the form of

Eq. (l). In addition, induced processes have been

neglected in the scattering terms. The variables

Pa, Vt, P’, and B alao depend upon spatial position

and time, but this has been suppreeaed in the inter-

est of compacting notation.

The transport equation ia coupled through the

emiaaion source term to a radiation and material

energy balance. The equation to express energy con-

aarvation is

aur~, t)

at = 13(r,t)
[[H ] [H

~t(V) I(R)dv d~ -
I

- c Up(z,t) Ur(zst) + s(~,t)

t I

uhere ur~,t) is the equilibriumradiation energy

deneity* defined in terme of the Plmck fw~tion

Ur(r,t) - +
~
B(v)dv = aT4

with

~2k4r5
a=—.

~oc3h3

The emission term in the tranaport

sequently be expreaaed in terme of

energy deneity an

equation will

the radiation

aa

Pa(v) B(v)

where bv is the

“ &lla(v)

normalized

bv ur(r,t) , (8)

Planck spectrum

b - 15h4v3 1
v =4k4T4

I
ehv/kT -

1] “
(9)

Thie enablee us to define the Up in Eq. (5) in terms

of bv as

Up@, t) = Ibv ~a(V) dv . (lo)

The remainingvariablee, not yet defined in Eq. (5),

are an arbitrary source function S and the variable

B that relates the meterial energy density Um to the

radiation energy density Ur aa

aum~,t) 1

aurE, t) ‘~ “

The material energy density in related to the

material temperaturethrough equation-of-state

(11)

(6)

(7)

eub-

H + l.la(V-+V,&o~-) I(~,V-,QO, t)dvdQdv-dQO
v -—

1

*
Note that ur(r,t) ia not the energy density of the
radiatiom field.

tablea. l%is relationshipwill be expressed aa

umk,t) = y(~,t) T(r,t) , (12)

where y(r,t) will in general depend upon pressure,

temperature,etc.

At thi8 point, we aasume that the tranaport

equation [Eq. (l)], the energy conservationequation

[Eq. (5)], the relation between the material energy

density and radiation energy density [Eq. (11)], the

relation between the material energy density and the

temperature [Eq. (12)], and the miscellaneousdefini-

tions that have been given provide an adequate mathe-

matical descriptionof the problem. The proposed

method for eolving these equations in the absence of

scatteringis diacuased in Sec. III.

“.
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111. IMPLICITMONTE CARLO MFTHOD IN THE ABSENCE OF
SCATTERING

A. Complete Emission Term

The emission source term of the transport

equation ia evaluated by solving the energy conser-

vation equation [Eq. (5)] for ur(~,t). In the ab-

sence of scattering,the ur~,t) that satisfied

Eq. (5) is given by

-f

t

[

c$opdt“
to

ur(r,t) = ur(r,to) e

-/

t

I

t cflopdt-”
.

+ dt”~(r,t”) e t
to

+ HIIa(V) I(r,v,Q,t-)dvdQ1]
t>to ,

s(~,t-)

where ur~,to) is a specified initial condition at

to.

The solution for ur~,t), aa given by

Eq. (13),may be utilized in tbe source term of the

tranaport equation, as given by Eq. (8), to expreaa

the tranaport equation in the absence of scattering

+ Q*V—-

pa(v)

I(R) + Pa(V) I(R)

[

-1
t
o c&rpdt”

bv ur~,to) e t

-1

t
cf3updt”’
.

~ dt013@t-) e t
I
S(r,t-)

+ H 11Pa(v) I@v,Q,t-)dvdQ . (14)

The emiaaion source term ia now specified in terms

of the intensity I, an extraneousheat source S,

and an initial condition ur~,to). It will subse-

quently be shown that the integrationof the indivi-

dual source term, wh%ch contalna the intensity,may

be done with Monte Carlo. The time and space

dependenceof ur(r,to) and any extraneous heat

source are asaumed to be known. There ia some ap-

proximationhere, in practice, because ur~,to) is

usually replaced by its cell average value computed

from the previous time step. However, there is an

additional complicationthat affects all three source

terms. The quantitiespa, bv, and 8 are also func-

tions of time since they depend upon the temperature.

In general, the time dependence of these quantities

is not known and must be extrapolatedin some manner

from informationbefore t = to.

The method developed by Fleck and Cummings

eaaentiallyconsists of allowing for an extrapolation

of u and 6 (if neceaaary),replacing the exponential
P

in Eq. (14) by their first-orderexpansions, and

using a time-centeringparameter (u) in a finite

difference approxhstion. In this report, the time-

dependent behavior of u and B will be extrapolated,
P

but the photon source in the Monte Carlo calculation

will be sampled directly rather than incorporating

the additionalapproximation of first-orderexpan-

sions of exponentialaand of time centering. Pre-

vious calculationshave ahown that Up and (3general-

ly, though not alwaya, display a nearly exponential

behavior with time and that the product up~ is almoat

constant. Therefore, the time-dependentbehavior of

Up and 6 during the time interval will be extrapo-

lated aa

-cl(t-to)/(to-t-l)
Up(qt) = Up(r,to) e s

to<t<tl ,

and

Cl(t-to)/(to-t-l)
!3@,t) = f3(r,t0) e s

t“<t<tl s

ao that

Upk, t) P(z,t) = Up(r,to) e(z,t”) ,

tc’<t<tl ,

(15)

(16)

(17)

3



where tl denotes the time at the end of the current

time interval and t
-1

denotes the beginning of the

previous time interval. The constant Cl may be

determined from the informationat the end of the

previous time intervai as

The time of a photon birth may be sampled in

the Monte Carlo simulationwith the density function

obtained by dividing Eq. (19) by DIAt. Therefore,

the time is sampled as

c1 = $ En

where UP and B

[’u (r,t-j 13(r,to)

1Upkto) 13(r,t-1) ‘
(18)

would generally be cell average quan-

tities in an actual calculation.

In the following subsections,the aamplfng of

the individual terms of the emission source is con-

sidered. In all cases, we extrapolateup and 6 with

Eqa. (15) and (16). For the purpose of sampling

collision points, the value of the attenuationco-

efficient at the beginning of the time interval is

utilized and similarly Va(v)b /a ia assumed to be
Vp

independentof time when sampling for v.

B. Sampling the ur(~,to) Source Term

The total photon energy per unit volume pro-

duced in a time At by the first term on the right-

hand aide of Eq. (14) la obtained by multiplying

this term by dfJdv At and integratingover ~ and V.

The result of this operation gives the energy

-c2(t-t”)
c up~,to) ur~,to) e At ,

tc’<t<tl , (19)

where C2 ~a defined as

C2 = c 13(r,to) up(+) + c1
to -1 “

(20)
-t

Therefore, the total energy per unit volume produced

by this source term during the time interval Is

given by D1 as

D . Ursto) m (r,t”)
[

-+tb
1

l-e 1.(21)C2

[1 -c2(tQ)
t-t+- !tnl-~1-e

II
* (22)

2

where C is a random number on the unit interval.

The total energy produced in a cell during the

time interval,assuming cell average quantities to

describe ur~,to), up~,to), and S(r,t”), is simply

the product of D1 and the cell volume. This energy

1s distributed in the Monte Carlo simulation to a

number of source particles. The initial time of

each of these source particles is selected with Eq.

(22), each initial spatial position la selected ran-

domly within the cell, each direction of flight is

selected from an isotropicdistribution,and each

frequency is selected with the density function

(23)

which is normally evaluated at to ●lthough in prin-

ciple it could alao be extrapolated.

c. Sampling the Implicit Source Term

The total energy per untt volume produced in a

time At by the last source term on the right-hand

side of Eq. (14) is obtained by multiplying this

term by d_CJvAtend then integratingover ~ and V.

The result of this operation gives the energy

cup(&to) p(~,to)

t
x He-c2(t-t”)H?Ja(V-)I(~,v”,fJ”,t”)dv-d~’

to I

x dt”At .

Tbe integral over v“, ~“, t“ will

,Carlo so that

Va(v-)I(r,v”,Q”,t-)d3rdv”dSJ0dt”=

(24)

be done with Monte

I
iw~ ‘

(25)

.!
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where w is a photon weight and the summation is
i

over all collisionsthat occur in the phase space

volume d3rdv”d~”dt”. Hence, each collision may be

thought of as performing the integrationover the

prime variablea in Eq. (24). The Monte Carlo iS

also integratingthis source term over the cell

volume because PSI is the photon energy dumped at

collisionsper unit volume.

We now focue our attention on the ith collision.

The amount of photon energy produced in At, due to

this collision,may be obtained from Eqs. (24) and

(25) as

-c2(t-t”)
cUpQ,tO) B(r, t”)e Ui At , t> t”, (26)

where Wi is the photon weight upon entering the

collision and t- is the time of the collision.

Therefore, the total energy of the subsequentpho-

tons produced in the time interval,as a direct re-

sult of this collision, ie given by the integral of

Eq. (26) over t from t- to tl. l%is total energy,

defined as D2, is

Cu (~,t”) f3(r, t=’) I -c2(tl-t’)
D2 -

‘i
l-e I . (27)

C2

The D2 energy may be given to an individual

photon that begins its life history at the collision

point. However, there ia a time delay between the

time the original photon suffers a collision and

the time the new photon ia emitted. This time de-

lay ia randomly determinedwith the density function

obtained by dividing Eq. (26) by D2At. The new

time is sampled aa

[1 -c2(tl-t-)
t=t’ -$-k.nl-~1-e

1]
. (28)

2

The emerging photon direction of flight ia selected

from an isotropic distributionand the frequency is

selectedwith the density function

Pa(V) bvlup . (29)

Allowing the photon to always scatter and ad-

justing ita weight at each collisionwill produce an

undesirable fluctuationof weights. The following

pseudoscatteringprocedure may be used to eliminate

this fluctuationof weights.

a. For D2/Wi f 1, a pseudoscatteringcollision

is allowed to occur with probability

“2- 11-:c2(t1(30)c u (~,t”) B(r,tO)
l-f=

and the history of the incident photon ia continued

without altering its weight. With probability f,

the history of the incident photon is terminated.

b. For D2/Wi > 1, splitting is utilized to

avoid weight multipliers greater than unity. This

splitting is accomplishedby setting n to the largeat

integer that is less than or equal to D2/Wi and this

value of n is increasedby one with probability

~-n,
The incident photon wefght is then split

‘i
into n different photons, each of which emerge with

the weight of the incident photon.

In either of the above cases, the new time

after the paeudoscatteringcollision is selected

from Eq. (28), the frequency is selected with the

density function of Eq. (29) and the direction of

flight is selected isotropically.

The retardationin time at these paeudoscatter-

ing collisionsarises naturally from the basic phy-

sical equations. This resulta because the material

energy gained by photon absorption increases the

probabilityof subsequent photon emission after the

absorption event.

D. Sampling the S Source Term

The part of the emission source term in Eq. (14)

that is due to the extraneousheat source S depends

upon the time-dependentbehavior of S. For compli-

cated situations,this term must be tabulated numer-

ically. Here we consider the simple case of

S(r,t) = So = constant (31)

within a cell, which may be simulated without numer-

ical tables.

The total energy per unit volume produced by

this source term in a time At is given by

5



c G (r, t”) 13(r,t”)

[

-c2(t-to)
So l-e 1At ,

‘2

to<t<tl . (32)

Hence, the total photon energy per unit volume pro-

duced by this term during the time interval ia given

by

c o (r, t”) f3(r,t0) so
D3 =

C2

x\t’-t0-&\,-~c2(t1-t0)ll’33)

A rejection scheme for sampling the initial

photon tine from the density function is given in

Fig. 1. The efficiencyof this scheme increases

monotonicallyfrom 1/2 for lC2(t1- to)! -Oto

1 for lC2(t1- t“)l -CO. Here, efficiency is de-

fined as the probabilityof success per trial.

The selection of the initial space coordinates,

the direction of flight, and the frequency of the

photon are identical to the correspondingselection

for the Ur term.

E. Energy Balance at the End of a Time Step

The relation between the material energy den-

sity and the radiation energy density as given by

Eq. (11) may be utilized to write Eq. (5) in the

form

aum~, t)

~= [H
Pa(v) I(R)dv dQ

1

-c up~,t) ur~, t) + S(r,t) , (34)

b22d
Fig. 1. Selectionof t for the S source term.

where real scatteringis still being neglected.

This equation is multiplied by d3rdt/AV and inte-

grated over a cell volume and a time interval to

obtain

— — IITotal photon energy lost at col-
Um(tl) - u (to) = lisions within the cell during 1

+

m.
\lthe time interval. J

[

Total photon energy created within
the cell during the time interval1
[Extraneousheat introducedinto the
cell during the time interval.

1}
/Av,(35)

the bara denote an average over the cell and

the volume of the cell. The first and second

on the right-hand side of Eq, (35) are obtained

where

AV iS

terms

from the Monte Carlo calculationduring the time

interval. Since um(to) and the extraneous source

term are assumed to be known quantities,um(tl) may

be determined from Eq. (35).

In the case of a perfect gas, the average tem-

perature within the cell at the end of the time step

is computed aa

——
T(tl) = um(tl)/Y , (36)

where y ia a constant. In the more general altua-

tion, Y is not a constant so that Eq. (36) would be

determinedby iterationwith y obta%ned from equa-

tion-of-statetables. In either case, the radiation

cell-averagedenergy density la

4— .

ur(tl) = a[T(tl)] . (37)

F. Summary of the Monte Carlo Calculationin the
Absence of Scattering

A typical Monte Carlo calculation that uaea the

sampling scheme described in this section is summa-

rized to clarify the asmpling procedure and to pro-

vide a convenient reference for comparisonswith

other schemes such as that previously proposed by

Fleck and Cummings. The calculationwill be de-

scribed for a time step beginning at to and contin-

uing to tl. We assume that initial informationat

to is available from the previous time step. This

would include a temperature,a material energy

density, a radiation energy density, cross sections,

. .

f
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and other necesssry data for each cell. There

would also be a source of photons that consists of

those photona that reached the time boundary to

during the last time-stepcalculation.

The derivation in this section haa been pre-

sented for one given cell ao that all quantities

should have a cell subscript. This cell identifier

will be denoted here by a j. The following compu-

tational steps are for the time interval from to to
tl

.

1. Make necessary adjustments in the photon

source* that consists of those photons that reached

the time boundary to during the last time step.

This may, for example, include a combing method to

equalize photon weights and to increase or decrease

the number of such photona by properly adjusting

photon weighta.

2. Create an additional source of photons that

initially carry a total photon energy D1jAVj in

each cell.
‘ere’ ‘lj

is determined from Eq. (21).

along with volume average values of u , u
rj Pj

, and

c2j“
The initial coordinate of each photon are

aempled aa discussed in part B of this section;

i.e., t from Eq. (22), the direction of flight iso-

troplcally,v from pa(v)b /a , and the space co-
Vj pj

ordinate randomly within the cell.

3. Create an additional source of photons due

to the S source term if nonzero, as discussed in

part D, and also create photone from any extraneous

photon sources that may be present.

4. For each photon of stepa 1, 2, and 3,

5SmPle its subsequenthistory and the history of

its progeny (due to paeudoscatteringevents) until

absorption,leakage, or time terminationat tl

occurs. At each collision, sample for a pseudo-

scatteringevent as discussed in part C, i.e.,

follow steps (a) and (b) on p. 5 to decide if pseudo-

scatteringoccurs. If not, terminate the history.

Otherwise, sample the new time from Eq. (28), aemple

the new frequency from the density function

Us(v) b /u , sample the direction of flight iaotro-
V pj

pically, and proceed with the weight that the photon

had before the collision (in the case of step (b) on

p. 5, more than one photon may emerge from the col-

lision point).

5. Tabulate the total photon energy lost at

collision events and the total photon energy created

*The word photon will be used here to denote a
bundle of photon energy.

at peeudoscatteringevents for subsequentuse in an

energy balance at the end of the Monte Carlo. Rather

than doing this at collisions, there are.statistical

advantagesobtained for optically thin cells by using

a path length estimator. Thus for each flight path

Energy lost to
collision events

= Va(v) Sw , (38)

Energy created due

\

a
to pseudoscattering= Pa(v)
events o ‘2ds0

/

t-
= pa(v) D2cdt

t“-a/c

Swcufl
= pa(v)

c2j

[[

1

x l-~e ‘2j@ -t-)
-e-c2j‘tl-t”+: )

c2js 11, (39)

where s is the length of the flight path that orig-

inates at t = t“ - s/c and terminates at t = t-.

Here, W is the photon weight and the flight path is

defined to be terminated (for scoring purposee)

whenever the photon suffera a collision, reachea a

cell boundary, or reachea time cut-off. Note that

this path length scoring does not affect the sam-

pling at paeudoscatteringcolliaiona. However, it

is important to observe that for a flight path ter-

minating with a collision, the exponential
1.

‘2j@ -t )
e alao appears inEqa. (27) snd (28).

Hence, this exponentialshould only be evaluated on

the machine once for each collision.

6. After all photona are processed in step 4,

compute the new material energy density in each cell

from Eq. (35). The cell temperature are computed

with Eq. (36), by iteration if necessary. Then the

average radiation energy density for each cell La

obtained fromEq. (37). The other necessary data,

such

next

cell

aa cross sections, that will be needed for the

time step are computed by utilizing the average
1

temperaturesat t .

7. Return to step (1) for the next step.

7



This method may be compared to the method sug-

gested by Fleck and Ctnmnings.The methods are sim-

ilar in the limit of a small time step although the

method propoeed here does have a time delay at

paeudoacatteringevents even for small time steps.

The method here auffera fr~the disadvantage that

one exponentialand one logarithmmust be evaluated

at each pseudoscatteringevent. However, the advan-

tage gained by treating the time-dependentbehavior

in a more exact manner should allow longer time

steps and hence more than counteract this disadvan-

tage.
b

G. Eliminationof PaeudoscatteringDomination

The implicit approach ia used to improve

accuracy and to incorporatestability in the calcu-

lations. However, it has certain difficulties that

are not encounteredin a purely explicit calculation.

For example, if the quantity f ia nearly zero for

the majority of the collisionswithin a cell and if

the cell is many mean free paths thick, a photon

may suffer a large number of pseudocollisionsbefore

being terminatedby absorption. This is a physical-

ly possible situation in many problems since cells

tend to be very thick at low temperatures (thousands

or even millions of mean free paths) and since f

tends to be near zero for cells where the tempera-

ture is changing slowly. It is instructive that

this type of problem also occurs In the scheme of

Fleck and Cummings and seems to be an inherent prop-

erty of the implicit method of solution. In their

scheme, the quantity f may be increasedby properly

setting the time-centeringparameter a.

For cells and time intervalswhere multiscat-

terings are a problem (these could be identified,

for example, ae cells where the product of Up with

a typical cell dimension is greater than 20 and that

also satisfy the criterion that f c 0.05 at the be-

ginning of the time interval), the followingpar-

tially explicit approach could be used. The source

term in the transport equation ia written as

(l-P)~lJa(v) bv ur~,to) +P X (source term

in Eq. (14)), (40)

where p is an input probabilityfor each cell ao

thatO<p<l. Then all energy sources in the .

8

previous derivation of this section, including the

pseudoscatteringsource, are multiplied by p. Also,

there is an additional explicit source with a photon

energy per unit volume of

D4=(l- p) c up@’) Urk,t’’)(tl- to) . (41)

The initial photon time for this source ia selected

as

t=to+(tl- to)c

the direction of flight is

and v is selectedwith the

s (42)

selected isotropically,

density function

l.la(V)b /u .
Vp

Here again Up and Ur would generally

represent cell-averagedquentitiea.

This method has the advantage that a certain

amount of mathematicalrigor is preservedwhereas

for cells where multiscatteringevents are a problem,

the probabilityp may be set so as to reduce the

number of scatteringevents to an acceptable level.

For example, for such cells p could be set so that

the pseudoscatteringprobability is 0.95 at the

beginning of the time step. This criterion for p

maybe inserted into Eq. (30) to yield

0.95 C2
P=

[

. (43)
-c2(tQ)

cUp(~,to) 8(r,t”) 1 - e
1

It seems advisable to use a (p#l) only when

absolutelynecessary because the implicit approach

has stability advantagesover the explicit approach.

It should also be noted that Up u= in Eq. (41) could

be extrapolatedin some manner. We did not extrapo-

late here because we anticipated that this semie~

plicit approach would be needed in low-temperature

regions where statisticsare already poor. This

makea the validity of an extrapolationhighly ques-

tionable.

H. Comments on Cell Averagin&

Eoth the method proposed in this section and

the method of Fleck and Cummings suffer from the

limitation that a number of space-dependentquanti-

ties must be repaced by cell averages. There isn’t

much one can do about this limitationwith the one

.
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exception of the space dependenceof the ur(~,to)

source term within a cell. In the method proposed

in this section,we have used this initial condition

for only one time interval. It is possible to use

the same initial condition for a number of subse-

quent time intervala so that the source term due to

collisions in the Monte Carlo calculationbecomes

the dominant term after the initial condition term

has died out. The spatial position in the implicit

term is simply the position of the collision and

represents no additional difficultywith cell aver-

agea. We explore this method in Appendix A.

Iv. EXAMPLE PROBLEMS

A. Introduction

The implicitMonte Carlo method of Sec. III

was used to solve two slab geometry problems. The

apport%oment of source photons and the computation

of cycle time widths was similar in the two problems.

These similaritieswill be discussed before consid-

ering the results of the individualcalculations.

Both problems were driven by a blackbody source

of photons positioned on the left surface of a slab.

l%is blackbody source waa held at a fixed tempera-

ture for the duration of the calculation. In the

Monte Carlo simulation,initial photon coordinates

were sampled from three separate sources at the

beginning of each time step. These sources included

the blackbody surface source, the explicit source

term of Sec. 111.B, and the explicit source term

(if nonzero) in Sec. 111.G. The total photon weight

(energy)due to each of these three sources is a

known quantity at the beginning of a time step.

The code distributed this total energy to the source

photons in such a manner that each photon began its

life history in the time cycle with approximately

the same weight. The number of photona to be start-

ed from each of the three sources was computed ao

that the total number of photons in the photon bank

at the beginning of a time step waa approximately

equal to an input constant. This total number of

photone in the bank at the beginning of a tine step

is equal to the aum of the number aempled from the

three sources plus those photons that remain from

the previous time step.

The widtha of the cycle time steps were allowed

to change in the course of each calculation. A

time-step.widthwas computed on the basia of the

maximum fractionalmterial energy density change

(6) that occurred for any cell during the previous

time step, so that

Atnew =
()
+ Atold . (44)

That is, the time step width is extrapolated to yield

an expected maximum fractionalmaterial energy den-

sity change of E. E was an input parameter for each

calculation. In addition, it waa required that

Atmin < At < Atmx, where Atmin and Atmx are also

input for each calculation.

B. Example Problem with Constant (13u#

The first example problem was also used by Fleck
1

and Cummings. A 4-cm-thick slab is heated by a

l-keV blackbody photon source on the left face of the

slab. The macroscopic cross section is specified

by the simple expression

( )Ba(v) “ z 1 - e-vi=~-1 ,
v’

(45)

where v and T are measured in units of keV. The

temperaturein all cells ia initially aet to 0.001

keV to keep a finite. A perfect gaa model is used
P 3with Y specified to be 0.008118 jerks/keV/cm .

Using the perfect gas model

proportional to the cube of

13(r,t).? T(~,t)3

also implies that 6 is

the material temperature,

. (46)

Because Up@,t) ia Inversely proportional to the

cube of the temperaturefor the cross section of Eq.

(45), the product (@p) is independentof the mate-

rial temperature. Therefore, the extrapolationof

(&Jp)~th Eq. (17) is exact for this problem even

though the extrapolationof 6 or u separately ia
P

not exact.

We found that the extrapolationof 6 and Op,

based on the Cl value obtained with Eq. (18), tenda

to “overshoot”since the extrapolationis based on

only the preceding time step. Therefore, for the

calculationspresented here, the extrapolationof

Cl waa based on a quadratic fit of the previous two

time steps.

9



The results of the implicit Monte Carlo calcu-

lation for various time-step control values of E are

given in Fig. 2. In these calculations,cell widths

of 0.4 cm were utilized and the total number of pho-

tons at the beginning of each time step waa held at

approxlmtely 24,000. The computed temperaturesare

nearly independentof E from t = O to t = 0.05 sh

since the input time-stepminimum of 0.002 ah is

greater than the time-stepwidth computed with Eq.

(44) . For t > 0.05 ah, the larger E calculation

use larger time atepa, but there seems to be little

difference in overall accuracy.

The curves shown in Fig. 2 at t = 0.4 ah are

typical of the results at equilibrium. The cell

temperaturesexhibit significant fluctuationsfrom

time step to time step that are somewhat similar to

the fluctuation observed in Fig. 2 with different

valuee of E. However, the computed material energy

of the entire slab is relatively stable between sub-

sequent time steps with a standard deviation of

about 1.3%.

t

●ao.05 —

‘A ●A.
●xo.lo ...................

●=o.20 --------
h. i

0

1-

“.T

0.2

I

\\4 0.05

\

t“nn~ -h-k”

I I

-“.”- . ..””.

-1oo~
Lo 2.0 3.0 4.0

X (cm)

Fig. 2. Temperatureof slab heated by a l-keV
blackbody photon source at x = O.
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In the calculationsof Fig. 2, the path-length

estimator of Eqs. (38) and (39) was used for energy

deposition. This results in typical statistical

energy balance errors of from 1 to 3% relative to

the total material energy in the slab. Some calcu-

lation have also been mede with a collision estima-

tor, which conserves energy exactly. The results

indicated that, for a fixed amount of -chine time,

the path-lengthestimator seems to yield statisti-

cally better temperaturesat near-equilibriumcondi-

tions. However, it is difficult to draw conclusions

without comparing ensembles of such calculations.

The calculationsreported in Fig. 2 used a cross

section and perfect gas model such that the product

(f?up)was independentof temperature. We turn now

to a more challengingproblem where the product (13uP)

alao depends upon the temperature.

c. Example Problem with ~Up%}- 11~

The cross section for this calculationwas given

by

(47)

with v and T meaaured in units of keV. This ia

apprOx~tely the cross section of iron for v and T

in the low keV range where inverse Bremsatrahlung

is dominant. The cross section of Eq. (47) results

in a up of

Up(r.t) “~cm-l . (48)

The perfect gaa model was again used with a y of

0.03820 jerks/cm3/keV. Thus, the product &rp is

inversely proportionalto the square root of the

temperature.

The photon source on the left face of the slab

waa a 2-keV blackbody source for the duration of the

calculation. All photons reaching the boundary on

the left face of the slab were reflected back. All

photons reaching the boundary on the right face were

allowed to escape from the system. Ten equal mesh

intervalswere again used across a 4-cm-thick slab.

The result of an implicit calculationwith an

E time-step control value of 0.05 are given in Fig.

3. The total number of photons at the beginning of

-.

3
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each time step In this calculationwas held at difficultieswere encountered, and the temperature

approximately24,000. The temperaturestend to vary distributionremained flat across the slab (except

smoothly during the initial temperaturerise, but for statisticalfluctuations)as expected.

come fluctuationia observed at near-equilibrium

conditionsas may be seen from the last two time v. IMPLICITMONTE CARLO METHOD WITH SCATTERING

curves of Fig. 3. However, the overall results are A. Complete Mission Term

satisfyingbecause the minimum time-stepwidth used In this section, real scattering is included so

here, At rein,is 0.0005 ah. ‘rhis time-stepwidth that the transport equation is

-f

t

-J
t

(
cf3updt“ c&spdt’”

~~+~”v I(R) +Vt(V) I(R) ‘~Pa(V) bv ur(~,to) e
to

I

t .
dt” fl(r_,t’)e t-—

x[s(~t)+JJI@~~tO)[~t(v) -;;;ps(w~JY2)dvdQ-]dvd2

+
H

L~5(V”+V,&fi”) I(~,v”,Q”,t)dv”dCJ” .
v“

is about a factor of 103 greater than the time-step

width where a pure explicit calculationbecomes un-

stable.

Thie calculationwas repeated allowing only

about 6000 photons in the bank at the beginning of

each time step. The results agreed with the 24,000

photon calculation,although statisticalfluctua-

tions were somewhat greater.

In the initial calculationson this problem,

we found that a path-length estimator produced un-

acceptable instabilitiesat low temperaturea.
.

Therefore, in the calculationsreported here, a col-

lision estimatorwas used for flight paths such that

the number of mean free paths acroas a cell was

greater than 20. Otherwise, a path-length eatimstor

waa used.

The initial conditions of this problem were

changed for one test calculation to observe the ap-

plication of the implicit method for decreasing tem-

perature. al cells were epeclfied to have an

initial temperatureof 20 keV without any photone

present. Then the resulting temperatureaa a func-

tion of time was observedwith reflectingboundary

conditions specified on each side of the slab. The

temperaturedecayed until a near-equilibriumcondi-

tion was reached so that the photon field was approx-

imately in equilibriumwith the material. No

t=0.030 shake

~
. .

X (cm)

Fig. 3. Temperatureof slab heated by a 2-keV
blackbody photon source at x = O.

(49)
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The ur~, to) term and the S(r,t”) term have not

changed from the treatmentd18cussed in Sec. III so

they will not be repeated here. However, the im-

plicit source term has changed so we will consider

it.

B. Implicit Source Term

The extrapolationof UP and ~ is still assumed

to be 8iven by Eqs. (15) and (16) of Sec. III. The

total energy emerging from a collision (real scat-

tered plus paeudoscattered)is given by

c u (r,t”) f3(~,t0)
[

-c2(tl-t”)
D. = W.1-e 1

‘L J

+ 1 H
..

‘i l.lt(v-)
+Pa(V**v”*,Q”.~””)dv’’dfi’”,-— (50)

where the photon coordinatesupon entering the col-

lision are designated to be r,v-,fJ-,t”.The laat

term on the right-hand aide of Eq. (50) is identi-

fied as a real scattering term while the remainder

is a portion of the photon source due to emission.

A number of interestingobservationsmay be

made for varioua scattering interactions. We first

note that when PS = O, Eq. (50) reduces to Eq. (27)

in Sec. III with pure absorption. Another interest-

ing case occurs when all scattering is coherent.

Then the right-hand bracket of the first term on

the right-hand side of Eq. (50) becomes

lla(v’)/llt(vO).~is meana that coherent scattering

does not contribute to the emission term in agree-

ment with energy conservation. A scatteringkernel

where all photons suffering a real scatteringcolli-.

aion will lose energy ia another case of interest.

Then the emission term becomes greater than for the

correspondingcase of pure coherent scattering.

This mekea sense physically since the real scatter-

ing is feeding energy to the material. Finally, one

may consider a scatteringkernel so that the major-

ity of the radiation gains energy at a collision.

Then the emission term in Eq. (50) becomes negative

becauae the scatteringof radiation is taking energy,

from the material. This type of scattering,which

will be discussed later, introduces certain problems

in the Monte Carlo.

The laat term on the right-hand side of Eq. (50)

may be treated with an analog scatteringmethod. A

real scatteringis allowed to occur with probability

P~(V”)/Pt(V”),where

Ua(v-) = HU~(VO+V”O,fiO”fi””)dvO”d~”. . (51)

For a real scatteringevent, the new energy and di-

rection of flight are selected with the kernel

p6(v.+v”-,Q”oQ.0) and the final photon weight is

multiplied by the factor V“”/V-.

Irrespectiveof the result of sampling for the

reel scattering,the first term on the right-hand

side of Eq. (50) must also be treated at each colli-

sion. For the method described here, we let A be the

value of this term and first consider the case when A

is greater than zero. Then if A/Ui is leas than uni-

ty, a pseudoscatteringis allowed to occur with prob-

ability A/Wi. If A/Wi is greater than unity, we set

n to the largeat integer that is less than or equal

to A/Wi, increase n by one with probability (A/Wi)-n,

and allow n photons to emerge from the collision.

For such pseudoscatteringevents, the new time ia se-

lected from Eq. (28), the direction of flight is se-

lected from an isotropic distribution,and the fre-

quency is selected from the density function

pa(v)bvlap. These photons, which suffer a paeudo-

scatteringevent, emerge from the collision point

with the incoming photon weight Wi.

For scatteringkernela where A may be less than

zero, the situation is more complicated. Of course,

one could allow negative weights, but this tends to

increase statisticalerrors. There are at least two

alternativesthat appear practical. The firat alter-

native is discussed by Fleck2 and involves absorbing

the 10SS term in Eq. (50) into the s term as eval-

uated at to. Because this approach has already been

discussed by Fleck, we consider a second alternative,

which is to tabulate a quantity that we call Q for

each cell. Then whenever”a collision occurs where

A ia negative, Q is changed as

Q= (Q)old+A . (52)

However, if a collision occurs with a positive

A, the value of Q for the cell is checked. For a Q

. .

s
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of zero, the emitted photons are sampled as dis-

cussed before for positive A. For a Q leas than

zero but such that IQ! z A, Q ia increasedas

Q = (Q)old +A 53)

and the history of the photon is terminated. For a

Q less than zero but such that IQ] c A, Q is set to

zero, A is reduced by the old value of Q, and the

emitted photons are sampled as discussed before for

this new positive value of A.

This procedure ia approximatein the sense that

the spatial position within the cell and the time

of the collision are ignored for tabulatingQ. The

procedure also may result in Q values st the end of

the time interval that are nonzero. Such Q values

should be added to the ur(r,to) source term for the

next time cycle; i.e., the ur(~,to) source term is

reduced.

The inclusionof scatteringin the implicit

Monte Carlo requires sampling the scatteringkernel

for a new photon energy and direction of flight at

real scatteringevents. This sampling is straight-

forward for Thompson scatteringand there are also

numerous schemes proposed for sampling from the

Klein-Nfshinadifferentialcross section. For the

so-called inverse Compton scatteringevent, where

the electron velocity is not negligible so that the

photon may actually gain energy at a collision,

sampling techniquesare not ao well developed. In

the next section, a Monte Carlo simulation of in-

verse Compton scattering ia discussed.

VI. SAMPLING INVERSE COMPTON SCATTERING EVENTS

A. Introduction

The selection of an emerging photon energy from

the Klein-Nishinadifferentialcross section may be

accomplishedwith a variety of well-known tech-

niques. The method suggested in Appendix B utilizes

a fairly efficient rejection technique for incident

photon energies that are less than three times the

rest mase of an electron,but samples directly with-

out rejection for the photon energies greater than

three times the rest mass of an electron. The com-

puter time required for this method is not much

greater (perhapsaa much as 25% for some photon

energies) than that required by schemes that aemple

an approximateinverse function.

The selection of an emerging photon energy,

after a Compton scattering,becomes much more diffi-

cult when the electron velocities are large enough

in magnitude so that they cannot be neglected. Not

only does the selection of the emerging photon energy

become more complicated,but also the sampling of the

scatteringangle then depends upon the velocity of

the electron.

In the sampling scheme developed here, the

electrons are assumed to have a relativisticMsxwel-

lian distributionof velocities at some temperature

T. The velocity of the electron that scatters the

photon is selectedwith a rejection technique. A

Lorentz transformationof the incident photon energy

is then made to the rest frame of the electron, the

emerging photon energy and scattering angle in the

electron rest frame is selected from the Klein-

Nishina differentialcross section, and a Lorentz

transformationis made back to the laboratory frame

to computa the final photon energy and scattering

angle in the laboratory frame. The Lorentz trans-

formationsdo not require a great deal of computation

time because only a transformationof the energy and

scatteringangle is required.

The Compton scattering law for a relativistic

Msxwellian distributionof electron velocities is

diacusaed in part B of this section. A method to

aemple from this scattering law is proposed in part C

and a description of a subroutine that does this

sampling is given in part D.

B. Discussion of the Scattering Law

The Klein-Niahinadifferential cross section

for a Compton scattering from a free electron is

valid in tha rest frame of the electron. The cor-

respondingmscroecopic Compton cross section in the

laboratory frame, when the electrons are in motion

is given by
4,5

lla(v+vO,_&JO)“ Q#le(ve-+v:,Q#<) , (54)

where

&is the photon direction of flight,

v ie the photon frequency,

13



D=l - nw/c ,-— (55)

D*=1 - fi”~~lc , (:6)

~ is the electronvelocity in the laboratory

system,

1 I

-112
a=l- (v/c)2 ,

and Pme 1s the mecroacopic Klein-Nishina

tion in the rest frame of the electron.

(57)

cross sec-

The sub-

scripts e on v and g alao denote their observed

values as seen from the rest frame of the electron.

The total scattering crose section may be ob-

tained by multiplying Eq. (54) by dv- d~” and inte-

grating over V“, ~“. Since dv” dfJa= ADOdv~ d~0,4

the resulting cross section is

(58)

where the absence of arrows denotes an integration

over the respective primed coordinate. The result

of Eq. (58) could ●lso be obtained by using an in-
4,5

variant transformationfor total cross sections.

The cross section in Eq. (58) is due to elec-

trons travelingwith a velocity ~. The cross sec-

tion due to a distributionof electron velocities

is obtained by multiplying Eq. (58) by the proba-

bility that an electron will be traveling in a di-

rection that is within d~about E and integrating

the resulting expression over ~. llms we write the

macroscopic cross section, u~(v,fJ),due to a distri-

bution of electron velocities as

where g~) describes the distributionof electron

velocities in the laboratory frame. For the con-

siderationshere, we will assume that g@ is an,.
isotropic relativisticMeswellian distribution.

Hence, we write g~ a.

g@)d~= f(v) V* dvdOO , (60)

(61)

where

-moc2AlkT
m. As e

f(v) = s

4TckT K2(moc2/kT)

m. is the rest mass of the electron, T is the average

electron temperature,and K2(Z) is the modified

Bessel functionof the second kind of order two.

f(v) is normalized so that

I

c
4T f(v)v2dv = 1 . (62)

o

If we now define the polar angle of ~ to be the

cosine of the angle between G and ~,

Pv _ ,- S*Q (63)

the correspondingintegrationover the azimuth angle

in Eq. (59) may be readily performed. Therefore,

the Compton cross section la given by

‘S(vam = fl,[ ‘(l- ‘v ~)”se(vei%.)

x 2nv2 f(v)dvdpv , (64)

where the Lorentz transformationgives the following

relation between Ve and V4,

v ( )
~- IV 1 -p

e Vc”
(65)

c. Sampling from the ScatteringLaw

It is apparent, from Eq. (64) and the consider-

ations which led to Eq. (59), that one could sample

the emerging photon energy ~“ and frequency v’ in

the laboratory system with the following steps.

(a) Sample an electron velocity v and polar

angle Vv with respect to the incident beam with the

two-dimensionaldensity function

a 1 -~ ~ v~eve,q 211v2f(v)
h(Pv,v) =

Vc . (66)
us(v,&)

. .

.

.

..

1
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(b) Compute Ve from Eq. (65) for the v and pv

sampled in step (a).

(c) Sample v: and Q- from the K1.ein-Niahina

cross-sectionApEe(ve+v~,~+QQ).

(d) Transform back to the laboratory system

as discussed in Appendix C.

The previous scheme requirea that one sample

Bv and v from the two-dimensionaldensity function

of Eq. (66). This appears impracticaldue to the

presence of pse in the density function. One may

thereforereplace step (a) of the previous scheme

with the followingprocedure.

(a) Samplev from the density function

41rVzf(v).

(a”) Given the v of step (a), sample B“ from

the density

(a-”)

function (1 - pv:)/2; -I<pv <-lo

Accept the pair pv,v with probability

apEe(ve,rlJ

[Mlse(ve,q)]mx ‘

where the numerator is evaluated at the Pv,v select-

ed and the denominator is the maximum value that the

numeratormay assume. If the pair is not accepted,

return to step (a).

lhis scheme is equivalent to sampling from

h(pv,v) of Eq. (66) since

I

Probabilityof accepting

II

Probabilityof sam-

a v in dv about v and - pling a v in dv about

a Uv in d~v about Uv v I

I

Probabilityof sampling a Pv
x

in dpv about Pv
I

I

Probabilityof accepting the
x

pv,v pair
I

laboratory system, which is assumed to be constant.

Because the Klein-Nishinscross section decreaaes

monotonicallywith increasing Ve, the maximum value

of Ap5e(ve,~) occurs st the minimum Ve; that is,

from Eq. (65) the minimum We is zero corresponding

to p =land~=l.
v
The efficiencyof such a scheme was found to be

nearly independentof the electron temperature,but

depends markedly on the incident photon energy. The

efficiencycurve in Fig. 4 was obtained for an elec-

tron temperatureof 0.2 electron rest mass units.

The majority of the collisions generally occur near

the left edge of this graph (say less than 0.2),

therefore the overall sampling efficiencymay lie

around 75%. If problems become important with higher

photon energies, it will be worthwhile to devise a

more efficient scheme for large photon energies.

D. Descriptionof Subroutine Comet

A subroutinehas been written to utilize the

previously discussed sampling method. This subrou-

tine hae been written specificallyfor the MCG code,

but because it is self-containedit may also be use-

ful in other codes for either production runi or as

a cross check against other codes.

The techniqueused to sample v from the density

function 4nv2f(v) is discussed in Appendix D. The

tables required for this sampling method are con-

structed with a CALL COMET (-1) statement before the

Monte Carlo sampling begins.

A photon energy (ENW1) and the cosine of the

scatteringangle (ANEW) in the laboratory system are

sampled with a CALL COMET (0) statement. The elec-

tron temperatureat the collision point (TELC) and

the incident photon energy in the laboratory system

(EOD1)are the only informationrequired by the sub-

routine. These are made available to the subroutine

through a labeled common block, CTN1. All energies

It should be noted that AU5e(Ve,~) la just propor-

tional to the Klein-Nishinamicroscopic cross sec-

tion since the electron density in the rest frame

multipliedby A is the electron density in the

~o-
2.0

Fig. 4.

incidentPhotonEnergy
(unitsofelectronrestmass)

Monte Carlo sampling efficiency va
incident photon energy at an electron
temperatureof 0.2.
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are in units of the rest mess of an electron. A

representativeCDC-7600 computationtime required

by COMET ia about 120 psec for an incident photon

of energy 40 keV.

The aubrouti.newill alao compute the ratio of

the laboratory ~rosa section, due to Maxwellian

electrons at a temperature (TRLC), to the corres-

ponding IC1.ein-Niahinacross section neglecting elec-

tron motion; i.e., at a temperatureof zero. This

is obtainedwith a CALL COMET (1) statement,where

(TELC) is the temperatureand (EOD1) ia the photon

energy in the laboratory system. The subroutine

returns the cross section ratio (CMTCS)and the

average relative energy gain (PECA),or loss, of the

photon in a Compton collision. The variable PECA

%a defined as AE/EODl, where AE la the average

energy gain, or loss, in a Compton collision for an

incident photon energy of EOD1. The cross-section

ratio and the average energy gain, or loss, are ob-

tained with a linear-linearinterpolationIn Table I.

The numerical values in Table I compare favorably

to those reported by Fraley.
6

The total Compton cross section in barns per

electron in the laboratory system may be obtaine-d

by multiplying the cross section ratio by the zero

temperatureK.lein-Nishinaexpression. fiis may be

done in the code by following the CALL COMET (1)

statementwith TCS = 0.4991*CRLN(T1)*CMTCS,where

T1 is the photon energy in the laboratory system,

CWTCS ia the croaa-sectionratio previously returned

by COMET, and CKLN is a function routine.

The average photon energy exchange aa obtained

by Monte Carlo sampling with COMET has been compared

to the correspondingnumerical values in Table I

for a number of Incident photon energies and elec-

tron temperatures. These comparison agreed within

statisticalerrors. A calculationwas also made of

the average cosine of the scatteringangle aa a

function of the emerging photon energy for an inci-

dent photon energy of 20 keV. There was no signifi-

cant differencebetween the Monte Carlo resulta and

numerical calculations.

VII. CONCLUSIONS

The proposed implicitMonte Carlo scheme ax-

hibits significantatability advantages over a

pure explicit calculation. This stability advantage

has alao been reported in previous calculationsby

Fleck and Cummingsl using a different implicit method

than the method proposed here.

In deriving the implicit scheme reported here,

we have sampled directly from densfty functions

without making simplifyingassumptionswhenever pos-

sible. This resulted in a more involved sampling

scheme than that obtained through approximatingex-

ponential by first-orderexpansions and by time

centering. The small increase in computational

effort appears to be more than offset by the advan-

tage of a more rigorous treatment of the time var-

iable.

The simple, pure absorption example problems

have indicated the feasibilityof using the implicit

scheme proposed in Sec. III. We anticipate extending

this implicit approach to more complex problems of

such a nature that the real scattering treatment

given in Sec. V would be used with the treatment of

inverse Compton scattering aa discussed in Sec. VI.

A basic statisticalproblem in computing non-

linear radiative transportwith an implicit approach

is in the acorlng of energy deposition. Each esti-

mator tends to suffer from some disadvantage. For

example, the path-lengthestimator,as used in the

example problems, does not conserve energy. How-

ever, energy is conservedwith a colliston estimator,

but statisticalerrora are large in thin cells.

These considerationsindicate that the uae of a

modified collision estimator should be examined.

One possibility is to sample the distance to a col-

lision point with the cross section (1 - f) pa(v)

and to multiply the photon weight by the factor

-J
s

fpa(v)ds
o

e

after each flight path. The change in the photon

energy ia then deposited in the respective cells.

Since the factor (1 - f) changea along a flight path,

the asmpling from the cross section (1 - f)~a(v)

requires some special considerations. The technique

proposed in Ref. 7 for sampling distancea to col-

lision points with varying total cross sections is

applicable. This method of depositing energy is

presently being investigated.

. .
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TARLE I

COMFTONCROSS SECTIONSCALINGFACTORANU AVERAGEPHOTONENERGTLOSS

Phmet-m a ElectronTemperaturea. ..----
!z!?E&LM!!L .0400

0.00

.04

.08

.12

.16

.20

.24

.28

.32

.40

.50

.75

1.00

1.50

2.00

2.50

3.00

4.00

1.0000 1.0000

0.0000 - .1765

1.0000 .9931

.0368 - .1132

1.OOOO .9882

.0681 - .0624

1.0000

.0953

1.0000

.1191

1.0000

.1402

1.0000

.1591

1.0000

.1761

1.0000

.1917

1.0000

.2191

1.0000

.2480

1.0000

.3036

1.0000

.3445

1.0000

.4026

1.0000

.4431

1.0000

.4735

1.0000

.4975

1.0000

.5335

.9847

.0202

.9820

.0154

.9800

.0460

.9784

.0728

.9771

.0966

.9761

.1178

.9744

.1544

.9730

.1921

.9706

.2618

.9689

.3113

.9663

.3794

.9644

.4255

.9630

.4596

.9618

.4861

.9600

.5253

0800-

1.0000

- .3875

.9861

- .2867

.9764

- .2100

.9696

- .1490

.9645

- .0990

.9606

- .0570

.9576

- .0210

.9552

.0104

.9532

.0381

.9502

.0s50

.9474

.1322

.9428

.2174

.9396

.2762

.9347

.3549

.9311

.4070

.9284

.4448

.9261

.4740

.9227

.5165

.1200

1.0000

- .6355

.9789

- .4836

.9648

- .3741

.9548

- .2903

.9475

- .2234

.9420

- .1683

.9377

- .1219

.9343

- .0820

.9315

- .0471

.9272

.0111

.9233

.0689

.9166

.1707

.9120

.2393

.9051

.3293

.9000

.3876

.8960

.4294

.8929

.4612

.8882

.5073

1600-

1.0000

- .9223

.9718

- .7037

.9533

- .5542

.9404

- .4435

.9311

- .3572

.9241

- .2S74

.9187

- .2294

.9144

- .1801

.9109

- .1374

.9054

- .0669

,9004

.0022

.8920

.1217

.8860

.2008

.8772

.3026

.8708

.3674

.8659

.4133

.8619

.4479

.8560

.4976

2000-

1.0000

-1.2495

.9646

- .9466

.9419

- .7495

.9264

- .6081

.9153

- .5000

.9070

- .4139

.9005

- .3432

.8954

- .2836

.8913

- .2324

.8848

- .1486

.8788

- .0675

.8687

.0708

.8615

.1608

.8511

.2749

.8435

.3464

.8376

.3965

.8330

.4341

.8260

.4876

2400-

1.0000

-1.6185

.9575

-1.2117

.9309

- .9594

.9129

- .7833

.9001

- .6512

.8905

- .5473

.8832

- .4628

.8774

- .3921

.8726

- .3319

.8652

- .2339

.8583

- .1401

.8467

.0181

.8385

.1195

.8265

.2463

.8178

.3248

.8112

.3793

.8059

.4199

.7981

.4771

2800-

1.0000

-2.0304

.9504

-1.4984

,9200

-1.1832

.S998

- .96S6

.S854

- .8102

.S748

- .6871

.8667

- .5877

.8602

- .5053

.8549

- .4354

.8466

- .3225

.8390

- .2152

.8259

- .0364

.8167

.0769

.8033

.2169

.7937

.3025

.7864

.3615

.7806

.4052

.7720

.4664

3200-

1.0000

-2.4860

.9434

-1.8060

.9094

-1.4200

.8S71

-1.1635

.s714

- .9767

.S598

- .8330

.S508

- .7179

.8438

- .6229

.8380

- .5428

.8289

- .4142

.8206

- .2927

.8062

- .0923

.7961

.0332

.7815

.1868

.7711

.2797

.7631

.3433

.7569

.3901

.7475

.4553

3600-

1.0000

-2.9870

.9364

-2.1340

.8991

-1.6700

.S74S

-1.3674

.857S

-1.1503

.8453

- .9846

.8357

- .8528

.82S1

- .7446

.8219

- .6538

.8122

- .5086

.8031

- .3725

.7876

- .1498

.7767

- .0115

.7610

.1560

.7498

.2564

.7413

.3247

.7346

.3747

.7246

.4440

4000-

1.0000

-3.5330

.9295

-2.4s10

.8891

-1.9320

.8630

-1.5799

.8448

-1.3304

.8315

-1.1416

.S213

- .9922

.8132

- .8702

.8065

- .7681

.7962

- .6058

.7865

- .4543

.7699

- .2085

.7582

- .0572

.7415

.1245

.7297

.2326

.7207

.3057

.7136

.3589

.7031

.4324

~lectron Rest Naas Units.



APPENDIX A

A MORE.GENERAL IMPLICIT METHOD IN THE AESENCE OF SCATTERING

A. General Consideration altered slightly. Rather than repeat

The techniquediscussed in this section paral- tion, we give the reaulta for all but

such a deriva-

the firat time

lels the method of Sec. III except that the Initial interval. The first time interval (denotedby

conditionur~,to) ia used for a number of aubaequent n = O) ia treated exactly as described in Sec. 111

time intervals. The initial time will again be des- because the initial condition for this time interval

ignated as to and the subsequentboundaries of the has not changed. The term containing S is not con-
12

time intervalawill be designated aa t , t ,..., tn,
#tl

sidered here since its time-dependentform varies

.... . Then for each time interval, up and 6 from problem to problem.

ara extrapolatedaa The total photon energy per unit volume pro-

duced by the ur(~,to) source term is given by

-[

n-1

I cMr,t5ap@,ti)(t1+1i
1

-t)
i-oc U @,tn) ur(r,to)e

[

-C;(tn+l-tn)
D: = l-e

1
,n -1, 2, ....N ,

=;

n+ltn<t<t , n=O, l,...,N ,

n n-lc:(t-tb/(t -t )
13(r,t)- !3(r,tn)e s

tn<tCtn+l , n=O, l,...,N ,

[p

u (r,tq 13(r,tn)
c; = + h

1Upkvtn)fl(r,t’% ‘

n - 0, 1, .... N ,

(A-1)

(A-2)

(A-3)

where these are generally cell-averagedquantities

and where the superscriptis used to denote the

time interval.

These definitions serve to specify the source

terms in Eq. (14) ao that the sampling scheme may be

constructedas given in Sec. III, the only differ-

ence being that the initial.conditionhas been

where C; ia defined aa
L

c; = c Up(r,tn) f3(~,tn) + c! .
(tn+l- tn)

(A-4)

(A-5)

For a given time interval n and cell j, the energy

Dn AV ia distributed to a number of source photons.
lj j

The initial time for each of these photons is sem-

pled aa

[[

-c;(t=’+w)
t=tn- ~knl-~1-e

11
* (A.tj)

C2

the initial position is selected randomly within

the cell, the initial direction of flight is selec-

ted from the density function pa(v) bv/an as eval-
.r

uated at the beginning of the time interval.

The implicit source term will now be consider-

ed. A photon collision ia assumed to occur at a
*1time intervalm so that tm < t- < t . Due to this

collision, the photon energy produced in this time

interval is

c u (r, tm) r3(~,t’=)

[
-c;(t*l- tm)

D: = Wi l-e
1
.(A-7)

c;

“.

.

..

..
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.-

The collisionmey be treated as a pseudoacattering
m

event as discussed on p. 5 for a base time t

T

ther

than to. The new photon time after the colliai n is

sampled ae

[[

-C’&=%’)
t=t” -~flnl-~1-e

1]
. (A-8)

‘2

However, the initial conditionon ur(~,to) is not
m+l

respecifiedat t unless m = N, therefore this

collisionmay also produce photons during subsequent

time stepa. To allow for this, an implicit photon

bank is established. At such a collision,with

probability

-cs(r,tm) Up(r,th(t=+l-t”)
e

a photon ia stored in the implicit

respondingweight

()q%
~m+l t-t-
2

= cW(3(r,tm)e

s (A-9)

bank with a cor-

(A-1O)

and ita spatial coordinatesare aleo put into the

bank. Then during the next time step, such a pho-

ton produces the photon source energy

~mtl m-l-l
u (r,t )

[

&+l m+2-tm+l
2

(t )

~m+l
l-e 2

1
(A-n)

.

with the

t = t*l

[

L

initial photon

I-~h 1-
~m+l
2

.&+l@+2#+l)

e2 11 .

time selected as

E

(A-12)

The total photon energy of Eq. @-n) may be distri-

buted uniformly to an integer number of photons to

conserve expectedweights. These then become a real

photon source for the time step. In addition, with

probability

a

-cB(~,t&l) up(r,tti1)(tti2-ttil) , (A-13)
e

photon is retained in the implicit bank with weight
#rt2 = ~m+l

. If the photon is retained in the bank

[;.e., .&vives the probability check of Eq. (A-13)],

at the next time step m is advanced by one and the

steps representedby Eqa. (A-n) to (A-13) are re-

peated. In all cases, the direction of flight of the

implicit source is selected Isotropicallyand the

frequency is selected from the density function

Ba(v)bv/up as evaluated at the beginning of the cur-

rent time interval of interest.

B. Summary of the More General Implicit Method

This general implicit method is clearly more

complicated than the method described in Sec. III

although the computation time required per photon

history may not differ greatly for the two methods.

The programing effort required appears to be consid-

erably different. The major difference is the re-

quirement for an implicit photon bank, which adds

one more complicationto a computer program already

complicatedwith a constant maze of data manipula-

tions.

The scheme discussed in this appendix does have

definite advantagea,but in view of the disadvantages

(especiallyprogramming),it seems prudent to gain

more experiencewith the method of Sec. 111 before

trying this more general approach.

Jj
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APPENDIX B

SAMPLING FROM THE IU.EIN-NISHINADIFFERENTIALCROSS SECTION

A scheme to sample an emerging photon energy rejection technique that is more efficient for small

from the KLein-Niahinadifferentialcross section is B is used. FOr $ > 2.9, the Klein-Nishinacross

given in Fig. B-1. ~ ia the incident photon energy section is expressed as a linear sum of four density

in units of the rest mass of the electron, f!”is the functions. AU coefficientsin the linear sum are

emerging energy selected, and p is the cosine of the positive so that in a Monte Carlo sampling one of

scatteringangle. Three different methods are used the four density functions is selected randomly with

depending upon the incident energy of the photon: a probabilityproportionalto its coefficient. The

O c B C Q.4, 0.4 c B c 2.9, 2.9 c p. For final energy is then selected from that density

0.4 < ~ c 2.9, a rejectionmethod proposed by Xehn function. This sampling may be done analytically

in an unpublishedreport and aummsrizedby Goertzel for all four density

and KS10S8 (with errora) ia used. For ~c 0.4, a

APPBNDIX

TRANSFORMATIONFROM ELECTRON REST

The selection of the electron velocfty was dis-

cussed in Sec. VI. Here, we will summarize some

useful transformationpropertiesbetween the labora-

Z

.
tory frame, denoted as the frame, and the rest

n

c

FRAMR TO LABORATORY

=0
‘yl

v =0 ,
Z1

functions.

SYSTSM

frame of the electron, denoted as the
Le f

rame. where the subscript 1 denotea the electron.

The basic msthemeticelrelationshipsare lifted di-
1

.
momenta of the photon in the frame are

5
rectly from Bverett’a Relativity Notebook. His

notation will also be used here. .

z

4 P:2 =-+COS9” ,
The interactionin the frame is depicted

in Fig. c-1. Here, the electron velocity hae arbi-

trarily been chosen to be in the negative x-axia
.-galno

P;2 c s

direction. Then from Eq. (V), Ref. 5, p. 24, the

electronvelocities in 2
are

e

‘J(v-)i++o
and

P;2-0 9

(c-2)

(c-3)

The

(c-4)

(c-5)

(c-6)

(c-1)
where the subscript 2 denotes the photon and it is

arbitrarilyput in the x-y plane. The momenta of the

~~otoe

\
a.o

\
Electron*—————

Negative
~*\———

X direction L 0’ ‘o
\\

\

I
.

Fig. C-1. Photon scatteringoff of electron in
frame.

photon in the
I

frame may be obtained from Eq. (PM),
e

Ref. 5, p. 30, as

-hv”
PY2 “P;2=~ sin 9“ , (c-8)

“.

.
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.
.-

2

B- 0.4 + $- 2.9 +

C8 - 1/!32 C2 = 21B

C5 = 2f3

t-~
‘1

C9 = 1 + C5rl C6 = c;

1-

C7 - (C3 + C4C9 + C6C8 + IIC9)IC6
C7

- 2r2 +

C2- 1/6 C8 = 26 C3=C8+1 C5=C8+9 c, - C31C5

C9 - C3/(1 + C8r1) *

C9 = 1 “8=1

C8= l/f32 c7=l+213 C3 - 21(3 /

+ (rl)

c1 - C4C5 c1 - ‘2
* C9 - c,

1-

C1 - ‘2
C9 = 1 + 2f3r1

C1=C1+C4 c1 - ‘2

1-

Fig. B-1. Scheme for sampling the K.lein-Nishinadifferentialcross section.



and .y2p,+~ ax2f31n6 ,
a

(C-15)
ay4 =

and

.
az4

P =P’ -o.
Z2 Z2

(c-9)

E2 in the
I

frame may be
e

The energy of the photon

obtained from Eq. (cPE), (c-16) . .

s

Ref. 5, p. 31, aa

which may be wr%tten as

1 u
o

( )[

u
)

—-coae” B
c a

1 co coa e’_—

.
ax4This equation la used to compute the incident photon

energy in the electron rest frame for the subsequent

selectinnof the new energy and scatteringangle

from the KLein-Nishinadifferentialcross section in

this rest frame.

The precollisionphoton direction of flight in

(C-17)+

the
I

frame
e

p. 25, aa

may be obtained from Eq. (Y), Ref. 5,
and

1 -’in’. +m.
( )[u s s

.&cos e- a

(1)]u
0

—- coa 9- sin 6
c

ay4 “
u v-a-

)+-
x

Here,

., (C-18)

the emerging photon.

C-n to C-13 givea

u )-$cose- , (C-n)

the subscript 4 denotes

The inverse transformationof
-sin e-

‘a(+cose) ‘ ‘C-12) (C-19)

and

a -o,
Z2

(C-13)

a;4-+:$4“
Y (C-20)

where the a’s represent direction cosines. Assume

that in the selection from the Klein-Niahina,with

incident energy E2, the cosine of the scattering

angle was Va and the aximuth angle selected waa d.

Then the final direction cosines in the
I

frame
e

are (Cashwelland Everett,g p. 106)

The cosine of the angle through which the photon

z

.
scattera in the frame is given by p“ as

.
-.

:

- - Coa e“ a’ - sin e“ a- .
x4 y4

(C-21)
a ~2ps-~ ay2sin6 ,-a
x4

(C-14)
a

Combining Eqs. (C-17) through (C-20) into Eq. (C-21)

gives
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. .

,-.l-cose[(;-c..,)us

~ u u’

1
sin El”

+— .9inO”ain6-s+~cos 0° -—
A c c A

.

[
-–u+~(~-.o.e-).in6]} “sin e’

x
as

[

u
+ 1 - -QCOS e-

C -N:-cose-h’--:
1

x sin e- sin 6 . (c-22)

J

It is clear that the azimuthal orientationof the

electron is random, and hence the azimuthal scatter-

ing angle must be random. Therefore, Eq. (C-23) for

the laboratory cosine of the scattering angle of the

photon along with the selection of a random azimuth-

al laboratoryscatteringangle determines the emerg-

ing photon direction of the flight in the laboratory

system. The final energy in the laboratory system

is

.
‘4

or

obtained from the inverse transformation

.

.

‘(..CPX4+EJ=
‘E&’ax4+1)

(
u

x - ~ E4ax4 + E,

)

from the previous definition .f ax,,

‘El+cose-)-= ’+’-cose)‘line-sin’=’01CA I
E;= L

2
u

)

- $ .0s e-

(c-24)

(C-25)

This may be simplifiedsomewhat to It is important to note that in spite of the com-

plexity of the transformetiona,only Eqa. (C-1O),

[( u’

)
(C-23),and (C-25) are needed in the Monte Carlo.

u u
B-= pa l- ~coafJ”-~sln2 e“ +~cOatl” Many of the terms are similar so that relatively few

c c’ c operations

x

ity of the

(1-3c0se) ‘iine-ain:m “01
lection of

are required. Because of this, the major-

computation time is involved in the se-

the electron velocity and direction.

sln13”ain&~ u
so

CA 1
. (C-23)
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APPENDIX D

SAMPLING THE ELECTRON VELOCITY

Tables for sampling the alactron velocity are

stored at the five electron tauperatures of kT/moc2

= 0.001, 0.04, 0.1, 0.2, and 0.4. The tablea repre-

aant equiprobabilitybins for the kinetic energy so

that the ith entry denoted by Ei in a table ia com-

puted from the inverse function

i-1
--i%-

—.
2
2 (kT~2 C’ (EP~)

’28 ‘??()
moc

‘d=F- s (D-1)

where a simple transformationhaa been made from the

velocity apace of Sec. VI to energy apace, i.e.,

E = (moc2/kT)(A-1). A double linear interpolation

ia used betwean point valuaa in the table and be-

tween the electron temperature of the two tablaa

that apan the electron temperatureof intarest.

The linear interpolationbetween tables haa aatia-

factory accuracy. However, at vary smell kinetic

energies or very large kinetic enargies, significant

REFERENCES

errora result from using only 128 equally probable

bins. For low energiee, the density functionvariee

like &. This ia only significant for the firat

mesh interval El c E C E2 ao that in this mesh inter-

val the energy E is selected aa

E= E2R213 , (D-2)

where R ia a random number. The problem is not ao

easy to correct for large alectron kinetic energies.

Therefore, the equal probabilitybins actually dif-

fer somewhat from Eq. (D-1) and are given in Table

D-I. The uae of this bin atructura reaulta in an

accuracy that ia almoat as good as that obtained by

using an equally probable table of length 1024.

TABLE D-I

BINS FOR SAMPLING ELECTRON ENERGY

Probability
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